Quasi-symmetric Functions in Geometry

Parth Shimpi, Dan Townsend Supervised by Dhruv Ranganathan

October 12, 2021

Symmetric polynomials:

$$x_1^2 x_2 + x_2^2 x_3 + x_1^2 x_3 + x_2^2 x_1 + x_3^2 x_2 + x_3^2 x_1$$

Symmetric polynomials:

$$x_1^2 x_2 + x_2^2 x_3 + x_1^2 x_3 + x_2^2 x_1 + x_3^2 x_2 + x_3^2 x_1$$

Quasi-symmetric polynomials:

$$x_1^2 x_2 + x_2^2 x_3 + x_1^2 x_3 + x_2^2 x_1 + x_3^2 x_2 + x_3^2 x_1,$$

 $x_1^2 x_2 + x_2^2 x_3 + x_1^2 x_3, \quad x_2^2 x_1 + x_3^2 x_2 + x_3^2 x_1$

Symmetric polynomials:

$$x_1^2 x_2 + x_2^2 x_3 + x_1^2 x_3 + x_2^2 x_1 + x_3^2 x_2 + x_3^2 x_1$$

Quasi-symmetric polynomials:

$$x_1^2 x_2 + x_2^2 x_3 + x_1^2 x_3 + x_2^2 x_1 + x_3^2 x_2 + x_3^2 x_1,$$

 $x_1^2 x_2 + x_2^2 x_3 + x_1^2 x_3, \quad x_2^2 x_1 + x_3^2 x_2 + x_3^2 x_1$

$$\mathbb{Z}[x_1,...,x_n] \supset \mathsf{QSym}_{\mathbb{Z}}(x_1,...,x_n) \supset \mathsf{Sym}_{\mathbb{Z}}(x_1,...,x_n)$$

What does $QSym(x_1, x_2)$ look like?

What does $QSym(x_1, x_2)$ look like?

Constants: No restriction.

If ax_1^n occurs, then so should ax_2^n .

Terms with x_1x_2 : No restriction.

What does $QSym(x_1, x_2)$ look like?

Constants: No restriction.

If ax_1^n occurs, then so should ax_2^n .

Terms with x_1x_2 : No restriction.

$$f(x_1, x_2) = C + x_1 g(x_1) + x_2 g(x_2) + x_1 x_2 \cdot h(x_1, x_2)$$

Can extend to bounded degree power-series in countably many variables to get quasi-symmetric *functions*:

$$x_1^2 x_2 + x_1^2 x_3 + x_1^2 x_4 + ... + x_2^2 x_3 + x_2^2 x_4 + ...$$

Can extend to bounded degree power-series in countably many variables to get quasi-symmetric *functions*:

$$x_1^2 x_2 + x_1^2 x_3 + x_1^2 x_4 + ... + x_2^2 x_3 + x_2^2 x_4 + ...$$

Who cares about Quasi-symmetric functions?

- Combinatorialists
- Representation theorists
- Number theorists

Can extend to bounded degree power-series in countably many variables to get quasi-symmetric *functions*:

$$x_1^2 x_2 + x_1^2 x_3 + x_1^2 x_4 + ... + x_2^2 x_3 + x_2^2 x_4 + ...$$

Who cares about Quasi-symmetric functions?

- Combinatorialists
- ► Representation theorists
- Number theorists
- Dhruv

Quasi-symmetric functions have nice closure properties— they form a *Hopf algebra*:

Quasi-symmetric functions have nice closure properties— they form a *Hopf algebra*:

Well-behaved multiplication

Well-behaved comultiplication

 $\mathsf{QSym} \otimes \mathsf{QSym} \to \mathsf{QSym}$

 $\operatorname{\mathsf{QSym}} \to \operatorname{\mathsf{QSym}} \otimes \operatorname{\mathsf{QSym}}$

An antipodal map

 $\mathsf{QSym} \to \mathsf{QSym}$

Hopf algebras occur in nature

- ► Algebras over groups
- Universal enveloping algebra of a lie algebra
- Cohomology of lie groups

'Nice' geometric space' -----→

Chow Ring

(X, T)Toric Variety with dense torus $A_T^*(X)$ Cohomology ring of the quotient X/T. 'Nice' geometric space' -----→

Chow Ring

(X, T)
Toric Variety with dense torus

 $A_T^*(X)$ Cohomology ring of the quotient X/T.

X Toric Stack $A^*(X)$ Cohomology

Theorem

There is a natural isomorphism

$$QSym \cong A^*(X_{\widehat{\sigma}_{\infty}}),$$

where $X_{\widehat{\sigma}_{\infty}}$ is the toric stack obtained from the moduli space $\widehat{\sigma}_{\infty}$ of finitely many points on $\mathbb{R}_{>0}$.

Algebra

Rings and ideals

$$y^2 - x(x+1)(x-1) \longrightarrow S^1 \times S^1$$

Algebra

Rings and ideals

CombinatoricsCones and fans

$$y^2 - x(x+1)(x-1) \longrightarrow S^1 \times S^1$$

Algebra

Rings and ideals

$$y^2 - x(x+1)(x-1) \longrightarrow S^1 \times S^1$$

- × Ugly equations.
- × Need to read ∞ pages of Hartshorne before understanding cohomology.
- Requires brain power to do anything with.

Combinatorics Cones and fans

- ✓ Pretty pictures.
- √ Chow ring is just the ring of piecewise polynomial functions on the fan.
- ✓ Parth and Dan can do a summer project with this.

Let Σ be the fan, X_{Σ} be the associated toric stack. Then

$$\mathsf{PP}^*(\Sigma) \cong A^*(X_{\Sigma})$$

where $\mathsf{PP}^*(\Sigma)$ is the ring of piecewise polynomial functions on Σ .

Let Σ be the fan, X_{Σ} be the associated toric stack. Then

$$\mathsf{PP}^*(\Sigma) \cong A^*(X_{\Sigma})$$

where $\mathsf{PP}^*(\Sigma)$ is the ring of piecewise polynomial functions on Σ .

 $\widehat{\sigma}_2$, the moduli space of two (non-origin) points on $\mathbb{R}_{\geq 0}$:

 $\widehat{\sigma}_2$, the moduli space of two (non-origin) points on $\mathbb{R}_{\geq 0}$:

 $\widehat{\sigma}_2$, the moduli space of two (non-origin) points on $\mathbb{R}_{\geq 0}$:

 $\cong \mathbb{R}^2_{\geq 0}/((a,0)\sim (0,a))$

So we have

$$PP^*(\widehat{\sigma}_2) = \{f(x_1, x_2) \mid f(a, 0) = f(0, a)\}.$$

$$f(x_1, x_2) = C + x_1 \cdot p(x_1) + x_2 \cdot q(x_2) + x_1 \cdot x_2 \cdot r(x_1, x_2)$$

$$f(x_1, x_2) = C + x_1 \cdot p(x_1) + x_2 \cdot q(x_2) + x_1 \cdot x_2 \cdot r(x_1, x_2)$$

and so

$$f(x_1, x_2) \in \mathsf{PP}^*(\widehat{\sigma}_2) \quad \Leftrightarrow \quad f(a, 0) = f(0, a) \quad \Leftrightarrow \quad p \equiv q$$

$$f(x_1, x_2) = C + x_1 \cdot p(x_1) + x_2 \cdot q(x_2) + x_1 \cdot x_2 \cdot r(x_1, x_2)$$
 and so

$$f(x_1, x_2) \in \mathsf{PP}^*(\widehat{\sigma}_2) \quad \Leftrightarrow \quad f(a, 0) = f(0, a) \quad \Leftrightarrow \quad p \equiv q$$
 which occurs if and only if

$$f(x_1, x_2) = C + x_1 \cdot p(x_1) + x_2 \cdot p(x_2) + x_1 \cdot x_2 \cdot r(x_1, x_2)$$

$$f(x_1, x_2) = C + x_1 \cdot p(x_1) + x_2 \cdot q(x_2) + x_1 \cdot x_2 \cdot r(x_1, x_2)$$

and so

$$f(x_1, x_2) \in \mathsf{PP}^*(\widehat{\sigma}_2) \quad \Leftrightarrow \quad f(a, 0) = f(0, a) \quad \Leftrightarrow \quad p \equiv q$$

which occurs if and only if

$$f(x_1, x_2) = C + x_1 \cdot p(x_1) + x_2 \cdot p(x_2) + x_1 \cdot x_2 \cdot r(x_1, x_2)$$

or in other words

$$f(x_1,x_2) \in \mathsf{QSym}(x_1,x_2).$$

 $\mathsf{PP}^*(\widehat{\sigma}_2) \cong \mathsf{QSym}(x_1, x_2)$

$$\mathsf{PP}^*(\widehat{\sigma}_2) \cong \mathsf{QSym}(x_1, x_2)$$

This readily generalises:

$$\mathsf{PP}^*(\widehat{\sigma}_{\infty}) \cong \mathsf{QSym}(x_1, x_2, x_3, ...).$$

Here $\widehat{\sigma}_{\infty}$ is the moduli space of finitely many points in $\mathbb{R}_{\geq 0}$, constructed via

$$\begin{array}{ccc} \mathbb{R}^{\infty}_{\geq 0} & \twoheadrightarrow & \widehat{\sigma}_{\infty} \\ \left(a_1, a_2, a_3, \ldots\right) & \mapsto & \{a_1, a_1 + a_2, a_1 + a_2 + a_3, \ldots\}. \end{array}$$

Here $\widehat{\sigma}_{\infty}$ is the moduli space of finitely many points in $\mathbb{R}_{\geq 0}$, constructed via

$$\begin{array}{ccc} \mathbb{R}^{\infty}_{\geq 0} & \twoheadrightarrow & \widehat{\sigma}_{\infty} \\ (a_1, a_2, a_3, ...) & \mapsto & \{a_1, a_1 + a_2, a_1 + a_2 + a_3, ...\}. \end{array}$$

This data constructs a toric stack $X_{\widehat{\sigma}_{\infty}}$.

Theorem

There are natural isomorphisms

$$QSym \cong PP^*(\widehat{\sigma}_{\infty}) \cong A^*(X_{\widehat{\sigma}_{\infty}}),$$

where $X_{\widehat{\sigma}_{\infty}}$ is the toric stack obtained from the moduli space $\widehat{\sigma}_{\infty}$ of finitely many points on $\mathbb{R}_{>0}$.

The stack has a natural binary operation:

The stack has a natural binary operation:

and the diagonal map $x \mapsto (x, x)$.

The stack has a natural binary operation:

and the diagonal map $x \mapsto (x, x)$.

The operations lift:

$$\widehat{\sigma}_{\infty} \times \widehat{\sigma}_{\infty} \to \widehat{\sigma}_{\infty} \quad \text{------} \quad \operatorname{\mathsf{QSym}} \to \operatorname{\mathsf{QSym}} \otimes \operatorname{\mathsf{QSym}}$$

$$\widehat{\sigma}_{\infty} o \widehat{\sigma}_{\infty} imes \widehat{\sigma}_{\infty} \quad ext{------} \qquad \operatorname{\mathsf{QSym}} \otimes \operatorname{\mathsf{QSym}} o \operatorname{\mathsf{QSym}}$$

In the rest of the project, we worked towards various generalisations of this— in particular to the moduli space of points in $\mathbb{R}^2_{\geq 0}$.