
A Quick Introduction to Complex Tori
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§ 0.1 About. This is a short summary of a lecture course on Abelian varieties by Tony Scholl. Complete notes
for the said course can be found at https://zb260.user.srcf.net/notes/III/abel.pdf. These notes
were written as a supplement to the notes from a lecture course on Hodge theory (https://pas201.user.
srcf.net/documents/2023-ukag-hodge-theory.pdf), and should be read as such.

§ 1 Complex tori and their cohomology

It is a theorem that all commutative compact connected R-Lie groups arise as real tori, i.e. quotients V/Λ

where V is a real vector space and Λ ⊂ V is a lattice (free Z-module generated by a basis of V ). If in addition
we fix an isomorphism V ∼= Cn, then the quotient V/Λ is naturally a C-manifold and the group operation is
holomorphic. Complex Lie groups arising in this way are called complex tori.

Proposition 1.1. Any compact connected C-Lie group is a complex torus. In particular it is commutative.

If T = V/Λ is a complex torus, the corresponding lattice Λ is called the period of T . Note that V is the universal
cover of the complex torus T = V , and since the fundamental group of a torus is Abelian we have natural
isomorphisms π1(T, 0) ∼= H1(T,Z) ∼= Λ.

Remark 1.2. It is not hard to show that two tori V/Λ and V ′/Λ ′ are isomorphic if and only if there is a C-linear
map V → V ′ that restricts to an isomorphism Λ → Λ ′. Thus every complex torus has form Cd/(Z ⊕ MZ)
for some d× d complex matrix M (the period matrix) such that ImM has full rank. For instance, every elliptic
curve is given by C/(Z ⊕ τZ) for τ ∈ C \ R.

§ 1.1 Hodge theory of tori. Let T = V/Λ be a d-dimensional complex torus. Since T ∼= (S1)2d, the Kunneth
formula gives an isomorphism Hn(T,Z) ∼=

∧
n Hom(Λ,Z). Since V is a C-vector space, these spaces come

naturally equipped with a pure Hodge structure given as follows. Recall Λ is generated by an R-basis of V , so
we have natural isomorphisms

Hn(X,C) ∼= Hn(X,Z ⊗ Z) ∼=
∧

n Hom(Λ,C) ∼=
∧

n HomR(V,C) ∼=
⊕

p+q=n

∧
pVˇ⊗

∧
qV ,̌

where the final isomorphism comes from observing the decomposition HomR(V,C) = Vˇ⊕ Vˇ into spaces of
C-linear and C-anti-linear maps. Thus we declare Hp,q(X) =

∧
pVˇ⊗

∧
qV .̌

Theorem 1.3 (Hodge decomposition for tori). The spaces Hp,q(T) form an integral Hodge structure on Hn(T,Z).

Hodge decomposition doesn’t hold for arbitrary complex manifolds; one typically requires extra structure.
When there is a Kähler metric, this structure is the presence of harmonic forms. On a torus, it is the group
structure as we shall now see.

Say a smooth complex n-form ω is invariant if (+y)∗ω = ω for all y ∈ T . Write Invn(T) for the space of
invariant n-forms, and note that pulling back along the map π : V → T induces a bijection between invariant
n-forms on T and linear n-forms on V (i.e. n-forms df1 ∧ ... ∧ dfn for R-linear functions f1, ..., fn : V → C).
Thus we have Invn(T) ∼=

∧
n HomR(V,C). The following proposition identifies this space with the de Rham

cohomology.

Proposition 1.4. Invariant n-forms on T are closed, and every cohomology class in H•(T,C) can be represented by a
unique invariant form, giving an isomorphism Invn(T) ∼= Hn(X,C).

Choosing C-linear coordinates z1, ..., zd ∈ V ,̌ it follows that every (p, q)-class is uniquely represented by an
invariant form

∑
λIJdzI ∧ dz̄J for scalars λIJ. In particular,

Theorem 1.5. There is a natural isomorphism Hp,q(X) ∼= Hp(T,Ωq
T ).

Sketch. One can show that the holomorphic cotangent bundle of T is trivial, and hence Ω
p
T

∼= 𝒪T ⊗ Hp,0(T).
This reduces to the case p = 0, since we have Hq(T,Ωp

T )
∼= Hq(T,𝒪T ) ⊗ Hp,0(T). Now the inclusion C ↪→ 𝒪T

induces a map Hp(T,C) → Hp(T,𝒪T ), and one uses Fourier analysis to show this is precisely the projection
Hp(T, (C)) ↠ Hp,0(T).
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§ 2 Line bundles on tori

§ 2.1 Riemann forms. Note H2(T,Z) =
∧

2 Hom(Λ,Z) is naturally the space of alternating integral 2-forms
on Λ, or equivalently the space of alternating 2-forms V × V → R that are integer-valued on Λ×Λ.

Definition 2.1. A Riemann form on the torus V/Λ is a Hermitian form H : V×V → C such that the alternating
form ImH : V × V → R is integer valued on Λ×Λ.

It can be shown that Riemann forms on T = V/Λ are uniquely determined by their imaginary part, which from
the above discussion is an element of H2(T,Z) that satisfies the Riemann period relation Im(iv, iw) = Im(v,w).

Proposition 2.2. The space of Riemann forms is precisely the Néron–Severi group NS(T) ⊂ H2(T,Z), i.e. the image
of the first Chern map c1 : Pic(T) → H2(T,Z). Moreover, this correspondence restricts to a bijection between ample
Chern classes and positive definite Riemann forms (i.e. Riemann forms with positive definite imaginary part).

Definition 2.3. A polarisation of T = V/Λ is the choice of a positive definite Riemann form. A polarisation H

is principal if det(ImH|Λ) = 1, or equivalently if Λ admits a basis in which ImH is given by
(

0 Id
−Id 0

)
.

Thus a complex torus is projective if and only if it admits a polarisation. Such complex tori are called Abelian
varieties. By proposition 1.1, Abelian varieties are precisely projective group–schemes over C. In fact, any
complete group variety over C can be shown to be projective, and hence Abelian.

§ 2.2 The Appel–Humbert theorem. Since NS(T) is free for a complex torus, the exact sequence of groups
0 → Pic0T → Pic(T) → NS(X) → 0 splits (non-canonically). This can be used to give an explicit description
of Pic(T) as follows– first note that Pic0(T) is the cokernel of the map j : H1(T,Z) → H1(T,𝒪T ) induced from
the exponential exact sequence. For T = V/Λ, we have that H1(T,𝒪T ) = H0,1(T) = Vˇ and the image of j is a
lattice. Thus T̂ := Pic0(T) is also a complex torus, called the dual of T .

It can be shown that there is an isomorphism T̂ ∼= Hom(Λ,U(1)), i.e. the dual torus is the character-group of
the period of T . One can also define the group P(T) of twisted semi-characters, which are given by pairs (H,α)

for a Riemann form H and a function α : Λ → U(1) satisfying α(γ+δ) = α(γ) ·α(δ) ·exp(iπ ·ImH(γ, δ)).

Theorem 2.4 (Appel–Humbert). There is an isomorphism Pic(T) ∼= P(T) compatible with the identifications
Pic0(T) ∼= Hom(Λ,U(1)) and NS(T) ∼= {Riemann forms}.

Sketch. Given a pair (H,α) ∈ P(T), one uses it to describe an action U(1) ⟳ C × V . The induced map
(C × V)/U(1) → V/Λ gives a holomorphic line bundle [see Mum85, section I.2].

Remark 2.5. For a point x ∈ T in the complex torus and a line bundle L ∈ Pic(T), the bundle (+x)∗L ⊗ Ľ has
degree zero and hence we have a map ϕL : T → T̂ . This is a holomorphic homomorphism of complex tori, and
the line bundle L is ample if and only if H0(T, L) ̸= 0 and ϕL is an isogeny (i.e. a surjective homomorphism).

§ 2.3 The theta divisor. The sections of the bundle associated to (H,α) ∈ P(T) constructed in theorem 2.4
naturally corresond to holomorphic functions on V that are invariant under the given action of U(1). This
gives a functional equation, the solutions of which are called theta-functions of (H,α). The vanishing locus of
a theta function gives a divisor corresponding to this bundle, called a theta divisor.

Proposition 2.6 [Mum85, p. 26]. If (H,α) is a polarisation on the torus V/Λ , then associated space of theta
functions has dimension equal to

√
det(ImH|Λ).

Thus choosing a polarisation on T is equivalent to choosing an ample line bundle L, and this polarisation is
principal if and only if dimH0(T, L) = χ(L) = 1 (where we note that all higher cohomologies of L are trivial by
the Kodaira vanishing theorem.)

Corollary 2.7. Every principally polarised Abelian variety has a unique associated theta divisor up to translation.

Proof. Suppose Θ1, Θ2 are two theta divisors associated to a principal polarisation (H,α), then note that the
line bundle 𝒪(Θ1 − Θ2) has trivial Chern class. Now L = 𝒪(Θ2) is ample, hence the map ϕL : T → Pic0(T) is
an isogeny. In particular, it is surjective so there is an x ∈ T such that 𝒪(Θ1 − Θ2) = (+x)∗𝒪(Θ2) ⊗ 𝒪(−Θ2).
It follows that 𝒪(Θ1) = (+x)∗𝒪(Θ2), i.e. Θ1 is linearly equivalent to Θ2 + x. But (H,α) is principal, so the
associated line bundle has a unique global section (i.e. a unique corresponding divisor). Thus Θ1 = Θ2+x.
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