A Quick Introduction to Complex Tori

Parth Shimpi

§0.1 About. This is a short summary of a lecture course on Abelian varieties by Tony Scholl. Complete notes
for the said course can be found at https://zb260.user.srcf.net/notes/III/abel.pdf. These notes
were written as a supplement to the notes from a lecture course on Hodge theory (https://pas201.user.
srcf.net/documents/2023-ukag-hodge-theory.pdf), and should be read as such.

§1 Complex tori and their cohomology

It is a theorem that all commutative compact connected R-Lie groups arise as real tori, i.e. quotients V/A
where V is a real vector space and A C V is a lattice (free Z-module generated by a basis of V). If in addition
we fix an isomorphism V = C", then the quotient V/A is naturally a C-manifold and the group operation is
holomorphic. Complex Lie groups arising in this way are called complex tori.

Proposition 1.1. Any compact connected C-Lie group is a complex torus. In particular it is commutative.

If T = V/A is a complex torus, the corresponding lattice A is called the period of T. Note that V is the universal
cover of the complex torus T = V, and since the fundamental group of a torus is Abelian we have natural
isomorphisms 717 (T,0) = H; (T, Z) = A.

Remark 1.2. 1t is not hard to show that two tori V/A and V’/A’ are isomorphic if and only if there is a C-linear
map V — V' that restricts to an isomorphism A — A’. Thus every complex torus has form C%/(Z & MZ)
for some d x d complex matrix M (the period matrix) such that InM has full rank. For instance, every elliptic
curve is given by C/(Z & tZ) for t€ C\ R.

§1.1 Hodge theory of tori. Let T = V/A be a d-dimensional complex torus. Since T = (S')2¢, the Kunneth
formula gives an isomorphism H"(T,Z) = A™Hom(A,Z). Since V is a C-vector space, these spaces come
naturally equipped with a pure Hodge structure given as follows. Recall A is generated by an R-basis of V, so
we have natural isomorphisms

H™(X,C) = H"(X,Z® Z) = A" Hom(A, C) = A" Homg(V,C) = P APV @ AV,

p+q=n

where the final isomorphism comes from observing the decomposition Homg(V,C) = V" & V~ into spaces of
C-linear and C-anti-linear maps. Thus we declare H?9(X) = APV @ A9V".

Theorem 1.3 (Hodge decomposition for tori). The spaces H?(T) form an integral Hodge structure on H™(T,Z).

Hodge decomposition doesn’t hold for arbitrary complex manifolds; one typically requires extra structure.
When there is a Kihler metric, this structure is the presence of harmonic forms. On a torus, it is the group
structure as we shall now see.

Say a smooth complex n-form w is invariant if (+y)*w = w for all y € T. Write Inv"™(T) for the space of
invariant n-forms, and note that pulling back along the map 7 : V — T induces a bijection between invariant
n-forms on T and linear n-forms on V (i.e. n-forms df; A ... A\ df,, for R-linear functions fy,...,f, : V — C).
Thus we have Inv™*(T) = A™Homg(V, C). The following proposition identifies this space with the de Rham
cohomology.

Proposition 1.4. Invariant n-forms on T are closed, and every cohomology class in H* (T, C) can be represented by a
unique invariant form, giving an isomorphism Inv™ (T) = H™ (X, C).
Choosing C-linear coordinates z1,...,zq € V7, it follows that every (p, q)-class is uniquely represented by an

invariant form ) Arydz; A dzj for scalars Ary. In particular,

Theorem 1.5. There is a natural isomorphism H?9(X) = HP (T, Q}).

Sketch. One can show that the holomorphic cotangent bundle of T is trivial, and hence QF = 61 ® HPO(T).
This reduces to the case p = 0, since we have HY(T,Q}) = HY(T,07) ® HP°(T). Now the inclusion C < O
induces a map HP(T,C) — HP(T,67), and one uses Fourier analysis to show this is precisely the projection

HP (T, (C)) — HPO(T). O
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§2 Line bundles on tori

§2.1 Riemann forms. Note H*(T,Z) = A?Hom(A,Z) is naturally the space of alternating integral 2-forms
on A, or equivalently the space of alternating 2-forms V x V — R that are integer-valued on A x A.

Definition 2.1. A Riemann form on the torus V/A is a Hermitian form H: V x V — C such that the alternating
form ImH : V x V — R is integer valued on A x A.

It can be shown that Riemann forms on T = V/A are uniquely determined by their imaginary part, which from
the above discussion is an element of H? (T, Z) that satisfies the Riemann period relation Im(iv,iw) = Im(v,w).

Proposition 2.2. The space of Riemann forms is precisely the Néron-Severi group NS(T) € H*(T, Z), i.e. the image
of the first Chern map cy : Pic(T) — H?(T,Z). Moreover, this correspondence restricts to a bijection between ample
Chern classes and positive definite Riemann forms (i.e. Riemann forms with positive definite imaginary part).

Definition 2.3. A polarisation of T = V/A is the choice of a positive definite Riemann form. A polarisation H

is principal if det(ImH|A) = 1, or equivalently if A admits a basis in which ImH is given by ( ;).

Thus a complex torus is projective if and only if it admits a polarisation. Such complex tori are called Abelian
varieties. By proposition 1.1, Abelian varieties are precisely projective group-schemes over C. In fact, any
complete group variety over C can be shown to be projective, and hence Abelian.

§2.2 The Appel-Humbert theorem. Since NS(T) is free for a complex torus, the exact sequence of groups
0 — Pic®T — Pic(T) = NS(X) — 0 splits (non-canonically). This can be used to give an explicit description
of Pic(T) as follows- first note that Pic®(T) is the cokernel of the map j : H'(T,Z) — H'(T,67) induced from
the exponential exact sequence. For T = V/A, we have that H'(T,61) = H*'(T) = V" and the image of j is a
lattice. Thus T == Pic®(T) is also a complex torus, called the dual of T.

It can be shown that there is an isomorphism T= Hom(A, U(1)), i.e. the dual torus is the character-group of
the period of T. One can also define the group #(T) of twisted semi-characters, which are given by pairs (H, )
for a Riemann form H and a function o : A — U(1) satisfying &(y+08) = «(y)- «(d)-exp(irt-ImH(y,d)).

Theorem 2.4 (Appel-Humbert). There is an isomorphism Pic(T) = P(T) compatible with the identifications
Pic®(T) = Hom(A, U(1)) and NS(T) = {Riemann forms).

Sketch. Given a pair (H,«) € ®(T), one uses it to describe an action U(1) © C x V. The induced map
(C x V)/U(1) — V/A gives a holomorphic line bundle [see Mum85, section 1.2]. O

Remark 2.5. For a point x € T in the complex torus and a line bundle L € Pic(T), the bundle (+x)*L ® [ has
degree zero and hence we have a map ¢ : T — T. This is a holomorphic homomorphism of complex tori, and
the line bundle L is ample if and only if HO(T,L) # 0 and ¢ is an isogeny (i.e. a surjective homomorphism).

§2.3 The theta divisor. The sections of the bundle associated to (H, «) € #(T) constructed in theorem 2.4
naturally corresond to holomorphic functions on V that are invariant under the given action of U(1). This
gives a functional equation, the solutions of which are called theta-functions of (H, o). The vanishing locus of
a theta function gives a divisor corresponding to this bundle, called a theta divisor.

Proposition 2.6 [Mum85, p. 26]. If (H,«) is a polarisation on the torus V/A\ , then associated space of theta
functions has dimension equal to \/det(ImH|A).

Thus choosing a polarisation on T is equivalent to choosing an ample line bundle L, and this polarisation is
principal if and only if dimH®(T, L) = x(L) = 1 (where we note that all higher cohomologies of L are trivial by
the Kodaira vanishing theorem.)

Corollary 2.7. Every principally polarised Abelian variety has a unique associated theta divisor up to translation.

Proof. Suppose ©1,0; are two theta divisors associated to a principal polarisation (H, &), then note that the
line bundle ©6(@; — ©;) has trivial Chern class. Now L = 6(0;) is ample, hence the map ¢ : T — Pic®(T) is
an isogeny. In particular, it is surjective so there is an x € T such that 6(©; — 0;) = (+x)*6(02) ® 6(—03).

It follows that 6(©7) = (+x)*6(03), i.e. ©; is linearly equivalent to ®, + x. But (H, «) is principal, so the
associated line bundle has a unique global section (i.e. a unique corresponding divisor). Thus ©@; =0, +x. O
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