
Riemann surfaces
Based on a lecture series by Ruadhai Dervan.

Winter, 2023
Lecture 1, 10/10/23

This course aims to be an introduction to algebraic geometry, complex geometry, and parts of geometric
analysis. We will explain the theory of Riemann surfaces, these are smooth 2-manifolds with a lot of structure
which enables the notion of a holomorphic function (in one variable.) We will use this setting to explore various
facets of modern geometry– the study of differential geometry (differential forms and Hodge structures), of
algebraic geometry (compact Riemann surfaces are naturally projective varieties), geometric analysis, and to a
lesser extent topology and complex analysis.

§ 0.1 About. This course on Riemann surfaces is a part of the SMSTC training program for graduate students.
The lectures were delivered in-person in the University of Glasgow, and were transcribed live. The notes can be
found online at https://pas201.user.srcf.net/documents/2023-riemann-surfaces.pdf. Errors and
corrections should be communicated to by email to parth.shimpi@glasgow.ac.uk.

§ 0.2 Assessment. By presentation on some advanced topics after the lectures. There will also be two exercise
sheets, but these won’t be marked.

§ 0.3 Prerequisites. We assume some familiarity with complex analysis, basic notions of topology, (and not
very advanced) differential geometry.

We recap some important ideas from complex analysis.

Definition 0.1. A function f : U→ C defined on an open U ⊆ C is holomorphic if for all z0 ∈ U, the limit

f ′(z0) := lim
z→z0

f(z) − f(z0)

z− z0

exists. Equivalently, writing z = x+ iy and f(z) = u(x, y) + iv(x, y) for real-valued functions u, v, the function
f is holomorphic if it is smooth and satisfies the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂x
,

∂u

∂y
= −

∂v

∂y
.

Theorem 0.2. A function f : U → C is holomorphic if and only if it is analytic, i.e. for all z0 ∈ U there is a
neighbourhood U ′ ⊆ U of z0 such that f|U′ is given by a convergent power series f(z) =

∑∞
n=0 cn(z− z0)

n.

In particular, polynomials in z are holomorphic. The proof of the theorem above uses the following important
result.

Theorem 0.3 (Cauchy’s integral formula). Suppose f : U→ C is holomorphic and write D = {z | |z− z0| ⩽ r} ⊂ U.
Then for all a in the interior of D, we have

f(a) =
1

2πi

∫
∂D

f(z)

z− a
dz

where the integral is over the boundary of D (a circle oriented anticlockwise).

Corollary 0.4 (Identity principle). Given two holomorphic functions f, g : U → C on an open connected domain
U ⊆ C, if we have f|V = g|V for a non-empty open set V ⊆ U then we have f = g.

§ 1 Riemann surfaces

The definition of a Riemann surface will be modelled after that of a smooth manifold, except that we will use
holomorphic transition functions instead.

Definition 1.1. A Riemann surface is a Hausdorff topological space X with an open cover X =
⋃
αUα, and for

each α a homeomorphism ϕα : Uα → Ũα to an open subset Ũα ⊂ C such that whenever Uα ∩ Uβ 6= ∅, the
function ϕα ◦ ϕ−1

β is holomorphic where defined. We say each pair (Uα, ϕα) is a chart, and the collection of
all charts forms an atlas.
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Remark 1.2. A higher dimensional complex manifold is analogously defined, where we ask for the charts to go
into Cn with transition maps holomorphic in each coordinate.

In practice, we work locally. For p ∈ X, p is in some open Uα and then ϕα is a complex-valued function on Uα
which we write as z . Thus locally we are doing complex analysis. The transition functions being holomorphic
ensures this local coordinate is well-defined up to a holomorphic function, i.e. if another chart provides a local
coordinate w then w = f(z) for some holomorphic invertible function f.

Definition 1.3. A function f : X → C is called holomorphic if f|Uα
is holomorphic (in the local coordinate) for

all charts Uα ⊂ X.

As opposed to differential geometry where a manifold has many smooth functions on it, a Riemann surface
might have no non-constant holomorphic functions (eg. if it is compact). On the other hand, maps between
Riemann surfaces are usually abundant.

Definition 1.4. Let X be a Riemann surface with atlas {(Uα, ϕα)} and Y a Riemann surface with atlas {(Vα, ϕα)}.
A map f : X → Y is holomorphic if for all pairs of indices α,β, the map ϕβ ◦ f ◦ ϕ−1

α is holomorphic where
defined.

We say a bijection f is a biholomorphism if f−1 is holomorphic, and we usually treat biholomorphic Riemann
surfaces as identical.

Example 1.5. The following constructions are standard.

1. The complex plane C itself is a complex manifold, with a single chart (with the identity map). Likewise
any open U ⊂ C is a complex manifold with a single chart.

2. The 2-sphere S2 = C∪{∞} is a complex manifold called the Riemann sphere, with two charts S2\{∞} ∼= C
(via the identity) and S2 \ {0} ∼= C (via z 7→ 1

z
).

3. If π : S → X is a topological covering space and X is a Riemann surface, then S canonically obtains the
structure of a Riemann surface that makes π holomorphic.

4. Conversely we can construct Riemann surfaces as quotients– consider a lattice Λ ⊂ C (i.e. a rank two
additive subgroup generated by two R-linearly independent complex numbers). We can take the quotient
topological space C/Λ which is homeomorphic to a torus, and equip it with charts on which each open
set is small enough to lie within a fundamental domain of the Λ-action after pulling back to C . This is
an elliptic curve.

We will now discuss two important classes of examples in detail.

§ 1.1 Affine algebraic curves. Take a polynomial p(z,w) : C2 → C in two complex variables, and consider
the set S = {(z,w) ∈ C2 | p(z,w) = 0}. This is an algebraic curve. When is this a Riemann surface? This has to
do with whether the space is singular or not– in particular we want to be able to locally write w as a function
of z (or vice versa). The implicit function theorem deals with precisely this.

Theorem 1.6 (Implicit function theorem). For p, S as above and (z0, w0) ∈ S, if ∂p∂w (z0, w0) 6= 0 then there are
open balls B1 3 z0 and B2 3 w0 in C such that S ∩ (B1 × B2) ⊆ C2 is the graph of a holomorphic function
σ : B1 → B2, i.e. S ∩ (B1 × B2) = {(z, σz) | z ∈ B1}. In particular, (z0, w0) has a neighbourhood in S that is
homoeomorphic to B1.

Proof. We may assume (z0, w0) = (0, 0). First consider the holomorphic function p(0,w), this is a polynomial
in one variable with p(0,w) = 0 for w = 0 and ∂p

∂w
(0, 0) 6= 0 by hypothesis. Thus 0 is a simple zero. As zeros

of holomorphic functions are isolated, we can find a δ2 > 0 with p(0,w) 6= 0 whenever 0 < |w| < 2δ2. By
continuity of p, there is a δ1 > 0 such that p(z,w) 6= 0 whenever |w| = δ2, |z| ⩽ δ1. Let B1, B2 be the open
balls around the origin of radii δ1, δ2 respectively. Then for (z,w) ∈ S ∩ (B1 × B2), will write w as a function
of z.

For this, we use that for holomorphic f and a simple closed curve γ, we have

1

2πi

∫
γ

f ′(w)

f(w)
dw = #{zeros of f in the region bounded by γ.}

Consider the holomorphic functions fz(w) = p(w, z) for z ∈ B1, and the contour γ(t) = δ2 · e2πit. Then
N(z) = 1

2πi

∫
γ

f′z(w)
f′z(w)dw is an integer that varies continuously with z, and so considering z = 0 gives us
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N(z) = 1 identically. Thus for each z ∈ B1 there is a unique w ∈ B2 with fz(w) = 0. In fact the zero is then
given by

σ(z) =
1

2πi

∫
γ

w
f ′z(w)

fz(w)
dw,

which expresses w as a holomorphic function of z as required.

Corollary 1.7. For p, S as above, S ⊂ C2 is a Riemann surface if for all (z0, w0) ∈ S, either ∂p
∂z

(z0, w0) 6= 0 or
∂p
∂w

(z0, w0) 6= 0. In this case, we say S is the affine algebraic curve defined by p.

§ 1.2 Projective curves. Recall the projective plane is P2 = C3 \ {0}/ ∼ where (z1, z2, z3) ∼ (λz2, λz2, λz3) for
all λ ∈ C×. This is compact– this fact is easily seen by observing that P2 is the quotient of the (compact)
subset of unit vectors in C3 by the action of the compact group S1 ⊂ C×. Points in P2 can be labelled by the
homogeneous coordinates [z0 : z1 : z2], likewise for higher dimensional projective spaces.

Write U0 = {[z0 : z1 : z2] | z0 6= 0} and note that this is homeomorphic to C2 since all points have homoge-
neous coordinates of the form [1 : z : w]. The complement P2 \ U0 is homeomorphic to P1, so we can say
P2 = C2 ∪ C ∪ {∞}.

Note polynomials in z0, z1, z2 don’t take well-defined values on P2, but the vanishing locus of a homogeneous
polynomial is nonetheless well-defined. Indeed, if p(z0, z1, z2) is homogeneous of degree d then for λ ∈ C× we
have p(λz0, λz1, λz2) = λdp(z0, z1, z2). Thus it makes sense to ask when a homogeneous polynomial p defines
a Riemann surface inside P2.

Proposition 1.8. If p(z0, z1, z2) is a homogeneous polynomial such that the only solution to
∂p
∂z0

= ∂p
∂z1

= ∂p
∂z2

= 0

is (0, 0, 0), then the vanishing set S of p inside P2 is naturally a compact Riemann surface.

Proof. We will show that S ∩ U0 ⊂ C2 is a Riemann surface by using the implicit function theorem. It will
be true similarly and in a compatible way for U1 and U2, giving the required charts. The compactness then
follows since P2 is compact and S ⊂ P2 is closed.

To use the implicit function theorem, we need to rule out the possibility that there is a [1 : z : w] ∈ S

where ∂p
∂z1

(1, z,w) = ∂p
∂z2

(1, z,w) = 0. Note since p is homogeneous, say of degree d, we have Euler’s identity∑2
i=0 zi

∂p
∂zi

= d · p. Thus if ∂p
∂z1

(1, z,w) = ∂p
∂z2

(1, z,w) = 0 we must have ∂p
∂z0

(1, z,w) = 0, contradicting the
hypothesis that (0, 0, 0) is the only point where this happens.

Example 1.9. Let p(z,w) = z5+w5− zw− 1. We homogenize to get p(z0, z1, z2) = z51+ z
5
2− z

3
0z1z2− z

3
0, with

vanishing set S ⊂ P2. Then S ∩ U0 is the vanishing locus of the original polynomial, while S ∩ (P2 \ U0) has
five points [0 : 1 : e

−2πik
5 ], k = 0, ..., 4.

Remark 1.10. One can show that a Riemann surface is always orientable, i.e. there is an atlas where all the
Jacobians of the transition functions have positive determinant. Thus compact Riemann surfaces are given by
adding a holomorphic structure to an n-holed torus, n ⩾ 0. Donaldson sketches a proof of this using morse
theory.

Remark 1.11. Historically Riemann surfaces arose as the natural domains of ‘germs’ of multi-valued holomorphic
functions. We won’t go into this.

§ 2 Holomorphic maps

Holomorphic functions are well understood, so we can be ambitious and aim to have a structure theory of
maps between Riemann surfaces (which are locally holomorphic). This can shed light on important structure
of the Riemann surfaces– for instance a compact Riemann surface has no non-constant holomorphic maps to
C. By contrast, affine curves S ⊂ C2 have many holomorphic functions.

Example 2.1 (Maps between torii). Consider C/Λ for Λ a lattice. When does a linear map G : C → C induce a
holomorphic map C/Λ→ C/Λ? Clearly we need [G(z)] = [G(z + λ)] ∈ C/Λ for all λ ∈ Λ, so if G(z) = az + bLecture 2, 17/10/23

then this amounts to the requirement that aΛ ⊂ Λ. Thus for instance a = 1 works, i.e. translations always
induce maps C/Λ → C/Λ. For a non-trivial example, consider Λ = 〈1, i〉 and G(z) = (1 + i)z. This gives a
2 : 1 cover from the torus to itself.

Example 2.2. Just like holomorphic functions, we have a notion of meromorphic functions on a Riemann surface
i.e. f : X→ C ∪ {∞} that are not identically ∞ such that for all charts ψ : U→ ψ(U) ⊆ C, the function f ◦ψ−1
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is meromorphic on ψ(U). Viewing C ∪∞ as the Riemann sphere, we see that meromorphic functions are just
holomorphic maps to P1.

To get general theory, we use the inverse function theorem.

Theorem 2.3 (Inverse function theorem). Let U 3 0 be an open subset of C, and f : U→ C holomorphic such that
f ′(0) 6= 0. Then there is a possibly smaller neighbourhood U ′ ⊆ U of 0 such that f : U ′ → f(U ′) has a holomorphic
inverse.

Proof. Similar to implicit function theorem.

Corollary 2.4. Suppose U 3 0 is an open subset of C and f : U → C is a holomorphic function that vanishes on 0
but is not identically zero. Then there is some k ⩾ 1 such that on a possibly smaller neighbourhood U ′ ⊆ U of 0, we
have f(z) = g(z)k for a holomorphic function g : U ′ → C with g ′(0) 6= 0.

Proof. This is automatic– since f is analytic and vanishes at the origin, we have f(z) = zk(a0 + a1z + ...) for
k ⩾ 1, a0 6= 0. Thus f(z) = zkh(z) for some holomorphic function h with h(0) 6= 0. Then by the inverse
function theorem applied to z 7→ zk, the function z 7→ z1/k is well-defined on a neighbourhood of h(0) and we
can set g(z) = z · h(z)1/k to get the required result.

Proposition 2.5. Suppose F : X → Y is a non-constant holomorphic map between connected Riemann surfaces.
Then for all x ∈ X, there exist neighbourhoods U 3 x, V 3 f(x) and biholomorphisms ϕ : U → ϕ(U) ⊆ C,
ψ : U→ ψ(U) ⊆ C such that ϕ(x) = 0 and ψ ◦ F ◦ ϕ−1 is given by z 7→ zk for some integer k ⩾ 1.

Proof. This is a consequence of the above results. Start with any charts ϕ ′, ψ ′ around x, f(x) respectively and
set f = ψ ′ ◦ F ◦ ϕ ′−1. This is a holomorphic map, and after composing the charts with translations we may
assume f(0) = 0. Then f(z) = g(z)k for some holomorphic g satisfying g(0) = 0, g ′(0) 6= 0. Define ϕ = g ◦ ϕ ′,
and note this is holomorphic and invertible on a possibly smaller open neighbourhood of x. Thus we have a
new chart in which ψ ′ ◦ F ◦ ϕ−1 has the required form.

Note the k in the above proposition depends on both F and x, but is independent of the choice of charts. To
emphasise the dependence on x we will often write kx.

Definition 2.6. In the situation of the theorem above, we say x ∈ X is a ramification point of F if kx > 1. The
subset of all ramification points R ⊆ X is called the ramification locus, and its image F(R) ⊆ Y is called the
branch locus.

Since the ramification locus R is defined locally by x ∈ R ⇐⇒ F ′(x) = 0 and since F ′ is holomorphic in each
chart, we see that R is discrete (and hence finite if X is compact). Likewise if Y is compact (or F is proper), then
the branch locus F(R) is finite (resp. discrete).

Now assume F is proper, and consider the preimage F−1(y) ⊂ X of a point y ∈ Y. This set is discrete and
compact, hence is finite. So we can count it. Define (temporarily) the degree of F at y to be

d(y) =
∑

x∈F−1(y)
kx.

This is a temporary definition because in fact it does not depend on y at all. Thus we define the degree of F to
be its degree at any y ∈ Y.

Proposition 2.7. The integer d(y) does not depend on y.

Proof. We will show the function d : Y → Z is locally constant on Y, hence constant since Y is connected. Given
y ∈ Y with preimages x1, ..., xn ∈ X, pick neighbourhoods V 3 Y, Ui 3 xi sufficiently small so that Ui ∩Uj = ∅
for i 6= j, F(Ui) ⊆ V , and the restriction F : Ui → V is given by z 7→ zki in local coordinates. Here ki = kxi ,
and i = 1, ..., n. We wish to find a possibly smaller neighbourhood W 3 y on which d is constant.

Claim that there is a neighbourhoodW 3 y such that F−1(W) ⊆ U1∪U2∪ ...∪Un. The properness hypothesis
is essential here. Indeed, the natural map C t P1 → P1 is not proper and so while ∞ ∈ P1 has one pre-
image, any point in the neighbourhood of ∞ has two. Now having seen why the claim is non-trivial, we will
prove it using point-set topology arguments. Choose a sequence of open sets V1 ⊇ V2 ⊇ ... 3 y such that⋂
Vi = {y}. If the claim were false, then in particular W = Vi does not suffice and we can choose a point

zi ∈ F−1(Vi) \ (U1 ∪ ... ∪Un) for each Vi. This gives a sequence z1, z2, ... in the set F−1(V1) \ (U1 ∪ ... ∪Un),
which by the properness hypothesis is compact. Thus there is a subsequence converging to some z /∈ U1∪...∪Un.
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But by continuity of F and choice of Vi , we have F(z) = y. This is a contradiction since we know all pre-images
of y are contained in some Ui.

Having proved the claim, the result follows since for any y ′ ∈W, we have

d(y ′) =
∑

x∈F−1y′
kx =

∑n

i=1

∑
x∈F−1y′∩Ui

kx

but locally on Ui, the map is z 7→ zki and hence we have
∑
x∈F−1y′∩Ui

kx = ki since either y ′ = y (and it has
one preimage in Ui) or y ′ 6= y (and it has ki simple preimages).

Corollary 2.8. Any proper non-constant holomorphic map between Riemann surfaces is surjective.

Remark 2.9. The above corollary could also have been obtained from the open mapping principle.

We next use this to obtain topological consequences– in particular, counting poles of meromorphic functions
leads to a classification of compact Riemann surfaces.

Corollary 2.10. Let X be a compact Riemann surface. If there is a meromorphic function f : X → C ∪ {∞} with a
single simple pole, then f provides a biholomorphism X ∼= P1.

Proof. Note we can view f as a holomorphic map X→ P1. Since X is compact, f is proper and hence has degree
d = d(∞) = 1. Thus F is a continuous bijection between compact Hausdorff spaces, so by the topological
inverse function theorem, f is a homeomorphism. To show its a biholomorphism it suffices to show the inverse
continuous map f−1 is in fact holomorphic. But this is clear since in a local chart around any x ∈ X, f has
non-vanishing derivative and so the local inverse is holomorphic by the inverse function theorem.

This concludes for now the study of maps between Riemann surfaces. In higher dimensions, there are many
more interesting maps but codimension one phenomena are nonetheless controlled by the same rules which
describe maps between Riemann surfaces.

§ 3 Calculus on surfaces

We wish to eventually develop a theory of holomorphic differential forms and de Rham cohomology on Rie-
mann surfaces. Before that, we give an account of the differential geometry of smooth surfaces.

§ 3.1 Tangent and cotangent spaces. There are various ways to define vector fields and differential forms on
surfaces, for instance these can be realised most naturally as sections of the tangent and cotangent bundles
respectively. Here we will take a more abstract approach, defining tangent vectors as infinitesimal paths and
differential forms as derivations of smooth functions.

Lemma 3.1. Let U ⊆ R2 be an open neighbourhood of 0, f : U → R a smooth function, and γ1, γ2 : R → U two
smooth paths with γ1(0) = γ2(0) = 0. Let χ : U→ V ⊆ R2 be a diffeomorphism with χ(0) = 0, and set f̃ = f ◦χ−1,
γ̃1 = χ ◦ γ1, γ̃2 = χ ◦ γ2. Then the following hold.

(i) If both partial derivatives ∂f
∂x1

and ∂f
∂x2

vanish at 0 then the same is true for f̃.

(ii) If the derivatives dγ1

dt
(0) and dγ2

dt
(0) agree then the same is true for γ̃1 and γ̃2.

Proof. These are straightforward consequences of the chain rule.

Given the diffeomorphism invariance of these notions, we can make the following definitions. Let S be a (real,
smooth) surface with a point p ∈ S, f a smooth real-valued function defined on a neighbourhood of p, and
γ1, γ2 : R → S smooth paths with γ1(0) = γ2(0) = p.

Definition 3.2. We say f is constant to first order at p if ∂f
∂x1

and ∂f
∂x2

both vanish at p in some local chart.
Likewise we say γ1, γ2 are equal to first order at p if their derivatives agree in a local chart.

Definition 3.3. The cotangent space T∗pS of S at p is the set of equivalence classes of smooth functions on open
neighbourhoods of p ∈ S, where f1 and f2 are equivalent if and only if f1 − f2 is constant to first order at p.

Dually, the tangent space TpS of S at p is the set of equivalence classes of smooth paths γ : R → S with γ(0) = p
where two paths are equivalent if they agree to first order at p.
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Note there is an obvious map C∞(S) → T∗pS sending a function f to its equivalence class, for which we will
write [df]p (and omit the brackets whenever convenient). This gives T∗pS a natural vector space structure, and in
fact we can check that it is two dimensional. Indeed choosing local coordinates x1, x2 around p, these provide
smooth functions and so we have two classes [dx1]p, [dx2]p ∈ T∗pS. One checks that

[df]p =
∂f

∂x1
(p) · [dx1]p +

∂f

∂x2
(p) · [dx2]p,

hence any choice of local coordinates provides a basis for the cotangent space at the point. Similarly TpS is a
vector space, by choosing linear representatives of paths.

The two vector spaces are naturally dual to each other– if γ : R → S is a path with γ(0) = p and f is a smooth
function defined on a neighbourhood of p, then the derivative (f ◦ γ) ′(0) ∈ R depends only on the classes
[df]p ∈ T∗pS, [γ] ∈ TpS. Thus we have a perfect bilinear pairing

TpS× T∗pS→ R, ([γ], [f]) 7→ (f ◦ γ) ′(0)

giving an isomorphism T∗pS = HomR(TpS,R).

As a set, the cotangent bundle of S is given by T∗S =
⊔
p T

∗
pS. This can naturally be given the structure of a

vector bundle over S, but we won’t go into the details of this. Smooth sections of this bundle are called 1-forms,
but since we did not give the vector bundle structure on T∗S we will define what it means to be a 1-form
explicitly.

Definition 3.4. A smooth 1-form α on S is a map α : S → T∗S satisfying α(p) ∈ T∗pS for all p, and vary-
ing smoothly with p in the following sense: in local coordinates (x1, x2) around any p ∈ S, we can write
α = α1dx1 + α2dx2 for smooth functions α1, α2.

This notion of smoothness is well-defined. Indeed if (y1, y2) were another pair of local coordinates around
p ∈ S, then the corresponding cotangent vectors are related as

dxi =
∂xi

∂y1
dy1 +

∂xi

∂y2
dy2

wherever defined so the coefficients of the 1-form α remain smooth.

(Co)tangent vectors behave functorially with respect to smooth maps between surfaces– a map F : S → Q

naturally induces linear maps

dFp : TpS→ TF(p)Q, [γ] 7→ [F ◦ γ]
F∗p : T∗F(p)Q→ T∗pS, [f] 7→ [f ◦ F].

Note the behaviour is covariant on tangent vectors and contravariant on cotangent vectors. This pullback map
extends to 1-forms naturally, so if α is a 1-form on Q then the 1-form F∗pα given by (F∗pα)(p) = F

∗
p(α(F(p))) is

still smooth.Lecture 3, 24/10/23

§ 3.2 Integration along curves. One of the things that makes differential forms useful is that they can be inte-
grated along curves. In the simplest case, suppose γ : [0, 1] → S is a smooth curve in our surface whose image
lies in a chart with local coordinates x1, x2 and suppose α is a 1-form given on this chart as α1dx1 + α2dx2.
Writing γ(t) = (γ1(t), γ2(t)) in these local coordinates, we can define the integral of α along γ as∫

γ

α =

∫1
0

(α1 · γ ′
1(t) + α2 · γ ′

2(t))dt.

One checks that this is independent of local coordinates chosen. For a general curve γ, we cut it into smaller
curves γ1, ..., γn each of which is contained in a single coordinate chart, and then define

∫
γ
α =

∑n
i=1

∫
γi
α.

The fundamental theorem of calculus holds i.e.
∫
γ
df = f(1) − f(0) for any smooth function f. This can be

proven locally on charts.

§ 3.3 Higher differential forms. If we wish to analogously extend the theory of integration to surfaces, we
need to define 2-forms. Just as a function gives a 1-form, there is an operator taking a 1-form to a 2-form. But
this is more involved; the classical motivation for the definition is as follows.

Given a 1-form α on a surface S, we ask when is α = df for some function f? When S = R2, we have
α = α1dx1 + α2dx2 for a choice of coordinates. If α = df then ∂f

∂x1
= α1,

∂f
∂x2

= α2. Thus by the
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symmetry of mixed partial derivatives, a necessary condition for α to be of the form df is that the function
R = ∂α1

∂x2
− ∂α2

∂x1
vanishes identically. This is also sufficient– if R = 0 then we can find f as follows. Define

functions f1, f2 by

f2(x1, x2) =

∫x1
0

α1(t, 0) +

∫x2
0

α2(x1, t)dt, f1(x1, x2) =

∫x2
0

α1(0, t) +

∫x1
0

α2(t, x2)dt.

By construction, ∂fi
∂xi

= αi. Then Green’s theorem applied to the rectangle V with vertices (0, 0), (x1, 0), (0, x2),
(x1, x2) shows f1(x1, x2) − f2(x1, x2) =

∫
V
Rdx1dx2. Thus if R vanishes, then f1 = f2 and this is the required

function f.

We generalise this to arbitrary surfaces, with the motivation that the problem in question is controlled by some
anti-symmetric function. With this in mind, recall that for a real vector space E we define

∧
2E∗ to be the space

of skew-symmetric bilinear maps E× E→ R. There is a natural wedge-product operator

∧ : E∗ × E∗ →
∧
2E∗

(α,β)(e, f) = α(e)β(f) − α(f)β(e).

It is clear that this product is linear in each variable and α ∧ β = −β ∧ α. If E is 2-dimensional, one checks
that

∧
2E∗ is 1-dimensional and any basis α1, α2 of E∗ induces a basis α1 ∧ α2 of

∧
2E∗.

We are interested in the case E = TpS for a smooth surface S, so E∗ is the cotangent space T∗pS. A choice of
local coordinates x1, x2 induces a basis element dx1 ∧ dx2 for

∧
2T∗pS.

Definition 3.5. A (smooth) 2-form ρ on S is a map from S to
⋃
p∈S

∧
2T∗pS such that ρ(p) ∈

∧
2T∗pS for all

p ∈ S, and such that ρ varies smoothly in the sense that locally we have ρ = R(x1, x2)dx1 ∧ dx2 for some
smooth function R.

This is well defined independent of chart; for a different choice of coordinates y1, y2, ρ has the form ρ = R(y1, y2)·J(y1, y2)·dy1∧dy2
where J(y1, y2) denotes the Jacobian of y1, y2 with respect to x1, x2, and dyi =

∂yi

∂x1
dx1 +

∂yi

∂x2
dx2.

One can pull back 2-forms just like one does for 1-forms. In particular if F : S→ Q is a smooth map and ρ is a
2-form on Q then one obtains a 2-form F∗ρ on S, expressed in local coordinates in a very similar way.

§ 3.4 The exterior derivative. We write Ωi(S) for the set of smooth i-forms on S, where a smooth 0-form is
nothing but a function. We have already seen that there is a differential d : Ω0(S) → Ω1(S) sending a function
f to df. The content of the following result is that this extends nicely.

Lemma 3.6. There is a unique way to define an R-linear map d : Ω1(S) → Ω2(S) such that

(i) For α ∈ Ω1(S) and open set U ⊂ S, we have α|U ∈ Ω1(U) and (dα)|U = d(α|U).

(ii) If α1 = α2 on an open set U ⊂ S, then dα1 = dα2 on U.

(iii) For any function f ∈ Ω0(S), we have d(df) = 0.

(iv) If f ∈ Ω0(S) and α ∈ Ω1(S), we have d(f · α) = df∧ α+ f · dα.

Proof. If we have have defined d with these properties, then for a 1-form α = α1 · dx1 + α2 · dx2 in local
coordinates on an open U ⊂ S, we have

dα = d(α1 · dx1 + α2 · dx2)
= dα1 ∧ dx1 + dα2 ∧ dx2

= ...

=

(
∂α2

∂x1
−
∂α1

∂x2

)
dx1 ∧ dx2.

This shows uniqueness, and also gives a way to define d after one checks it is independent of charts.

Having expressed 2-forms as derivatives, we now see how to integrate them. For this we need to assume S is
oriented (so there are charts such that the coordinate-change Jacobians are everywhere positive). Let ρ ∈ Ω2(S)
have compact support in a single chart. Then we can write ρ = R(x1, x2)dx1 ∧ dx2 in local coordinates, and
define ∫

S

ρ =

∫
R2

R(x1, x2) · dx1dx2
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where the right hand side is a Lebesgue integral. If y1, y2 is another oriented chart with positive coordinate-
change Jacobian, then that this is well-defined is the usual transformation law for multiple integrals.

To integrate in general, we need the following technical lemma which says partitions of unity exist.

Lemma 3.7. Let K ⊂ S be compact and let U1, ..., Un be open sets with K ⊆ U1 ∪ ... ∪ Un. Then there are smooth
non-negative functions f1, ..., fn on S with f1 + ...+ fn = 1 on K, such that each fi is supported on Ui.

Definition 3.8. For a 2-form ρ ∈ Ω2(S) with compact support, we define
∫
S
ρ =

∑
i

∫
S
(fi · ρ) where the fi

form a partition of unity over Supp(ρ) and each fi is supported on a coordinate chart.

To see this makes sense, since
∑
i fi = 1 we have ρ =

∑
i(fi · ρ) and each fi · ρ is supported on a coordinate

chart so can be integrated locally. The integral is independent of the choice of partition of unity by linearity
of Lebesgue integrals.

Theorem 3.9 (Stokes’ theorem). If α is a compactly supported 1-form on an oriented surface S with boundary ∂S,
then

∫
∂S
α =

∫
S
dα.

Note we haven’t defined manifolds with boundary but a precise definition with nice pictures can be found on
Wikipedia. Locally, the boundary plays the same role as the curve in Green’s theorem. Since the result is local,
we can reduce to this case.

Thus on an oriented surface S, we have spaces of 0, 1, 2-forms Ωk(S) and exterior derivative operators
d : Ωk(S) → Ωk+1(S). We also know how to integrate k-forms on k-dimensional submanifolds (k ⩾ 1), and
Stoke’s theorem which relates the two integrals. Lastly, we have the wedge product ∧ : Ω1(S)×Ω1(S) → Ω2(S).

§ 3.5 The de Rham complex. Let S be a smooth surface, and consider the sequence of maps

0→ Ω0(S)
d−→ Ω1(S)

d−→ Ω2(S) → 0.

We know d ◦ d = 0 so this is a chain complex, and we can define the de Rham cohomology groups as the
cohomology spaces of this complex explicitly given by

H0(S) = ker(d : Ω0(S) → Ω1(S))

H1(S) =
ker(d : Ω1(S) → Ω2(S))

im(d : Ω0(S) → Ω1(S))

H2(S) =
Ω2(S)

im(d : Ω1(S) → Ω2(S))
.

We say a k-form α is closed if dα = 0 and exact if α = dβ for some (k − 1)-form β. Then every exact form is
closed and the de Rham cohomology measures ‘failure of closed forms to be exact’.

In general, H0(S) = R for a connected surface S. We will now compute some examples.

Lemma 3.10 (de Rham cohomology of R2). We have H0(R2) = R, and all other cohomology groups vanish.

Proof. Since R2 is connected, we know H0(R2) = R. The claim H1(R2) = 0 follows from the criterion for a
closed 1-form to be exact. Thus it remains to show H2(R2) = 0. Take a closed 2-form ρ = R(x1, x2)dx1 ∧ dx2
and claim we can find functions α1, α2 with R(x1, x2) = ∂α1

∂x2
− ∂α2

∂x1
, which will show the required result. This

can be done, for example, by setting α2 = 0 and α1(x1, x2) =
∫x2
0
R(x1, t)dt.

Proposition 3.11. Let S = S2 be the sphere. Then H1(S) = 0.

Proof. Suppose α is a closed 1-form on S. Take the standard charts U,V ⊆ S given by removing the north and
south poles from S respectively. Then U,V ∼= R2 so we can find functions fU, fV on U,V respectively such that
dfU = α|U, dfV = α|V . On U ∩ V , we see that fU − fV is locally constant hence is constant. Thus adding a
constant function to fV if necessary, we see that fU and fV agree on U∩ V and hence define a global function
f ∈ Ω0(S) with df = α.

Proposition 3.12. Let T = S1 × S1 be the torus. Then H1(T) is a two-dimensional vector space.
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Proof. Consider the standard angular coordinates ϑ,φ ∈ [0, 2π). Let γ1, γ2 be the standard circles correspond-
ing to ϑ = 0 and φ = 0 respectively, and consider the map

F : Ω1(T) → R2, α 7→
(∫
γ1

α,

∫
γ2

α

)
.

This is linear and vanishes on exact 1-forms by the fundamental theorem of calculus, so we get a well-defined
map F : H1(T) → R2. We will show F is injective and surjective.

If α is a closed 1-form such that
∫
γ1
α =

∫
γ2
α = 0, then writing α = Pdϑ +Qdφ locally shows that for any

fixed φ we have ∫
γ2

α =

∫2π
0

P(u,φ)du = 0

and hence the function f(ϑ,φ) =
∫ϑ
0
P(u,φ)du is well-defined and satisfies ∂f

∂ϑ
= P(ϑ,φ). Thus α̃ = α−df is a

closed 1-form of the form Q · dφ. But dα̃ = 0 implies Q is constant and we see that Q = 0 since
∫
γ2
Qdφ = 0.

Thus α = df is exact.

To show surjectivity, we consider the 1-forms dϑ, dφ which get mapped to (1, 0) and (0, 1) respectively.

Remark 3.13. In general, a similar argument shows H1(S) = Hom(Π1(S, p),R) where Π1(S, p) is the funda-
mental group of S for some base point p. In particular if Σg is the closed orientable surface of genus g then
H1(Σg) ∼= R2g.

§ 3.6 Compactly supported cohomology. We next calculate H2(S). For this, we need to first modify the
definition of de Rham cohomology when S is non-compact, by setting ΩiC(S) ⊆ Ωi(S) to be the subspace of
compactly supported i-forms. The exterior derivative respects the compact support property, hence we can
define HiC(S) to be the i-th cohomology of the complex

0→ Ω0C(S)
d−→ Ω1C(S)

d−→ Ω2C(S) → 0.

The main theorem is the following.

Theorem 3.14. For any connected surface S, we have H2C(S) = R.

Proof. We prove this in two steps– first the special case S = R2, and then use this to handle general surfaces.

In the case of R2, the proof is by explicit integration. We will consider the map I : Ω2C(R
2) → R given by

I(ρ) =
∫

R2 ρ. This is well-defined by the compact support property. Surjectivity follows since we can explicitly
find a smooth function ψ with I(ψ · dx1 ∧ dx2) =

∫
R2 ψ · dx1dx2 = 1. Thus it remains to show that the kernelLecture 4, 31/10/23

of I is precisely the space of exact forms. One containment is obvious by Stokes’ theorem, so suppose I(ρ) = 0
and write ρ = R(x, y)dx ∧ dy where (up to translation) R is supported in some box [0,N]2. We construct
α ∈ Ω1C(R2) with dα = ρ by integrating R cleverly.

First consider the ‘strong special case’ when
∫N
0
R(x, y)dx = 0 for all y. Define g(x, y) =

∫x
0
R(t, y)dt. Then

g(N,y) = 0 so g(x, y)dy is a compactly supported 1-form and its derivative is R(x, y)dx ∧ dy as required.
In general, consider g(x, y)dy. Then to reduce to the strong special case, we must manage the quantity
H(y) =

∫N
0
R(x, y)dx which doesn’t vanish in general. Take b : R → R a ‘bump function’ with compact support

such that
∫N
0
b(x)dx = 1. Since H : R → R also has compact support, so does h(x, y) = b(x)H(y). Moreover,∫

R2

h(x, y)dx∧ dy =

∫N
0

H(y)dy =

∫
R2

R(x, y)dx∧ dy.

Thus
∫N
0
(R(x, y) − h(x, y))dx = 0, i.e. the 2-form (R(x, y) − h(x, y))dx ∧ dy satisfies the hypotheses of the

strong special case and is hence exact. So to complete the proof, we need to show h(x, y)dx ∧ dy = dβ for
some compactly supported 1-form β. But reversing x, y we know that

∫N
0
h(x, y)dy = b(x)

∫N
0
H(y)dy = 0, so

this again is the strong special case.

Thus we wrote ρ as a sum of two 2-forms, both of which satisfy the hypotheses of the strong special case and
are hence exact.

For a general connected surface S, again consider the map I : Ω2C(S) → R given by ρ 7→
∫
S
ρ. Surjectivity and

vanishing on exact forms follows similarly as before, so we must show that ker I is precisely the space of exact
forms. Suppose ρ ∈ Ω2C(S) is such that

∫
S
ρ = 0. By the compact support property, there are finitely many
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contractible charts U1, ..., Un such that ρ is supported on a connected open set U1 ∪ U2 ∪ ... ∪ Un. Since we
know the result for R2, we know it holds for each Ui, so we show the result by induction on n.

Suppose n > 1. By connectedness of
⋃
iUi we can arrange that Ui∩Ui+1 6= ∅ for all i, so that V1 = U1∪...∪Un−1

and V2 = Un are connected opens. Then by induction hypothesis, any 2-form ρ̃ compactly supported on Vi
satisfying

∫
S
ρ̃ = 0 must be exact. So take a partition of unity f1, f2 such that Supp(fi) ⊂ Vi and f1 + f2 = 1

on Supp(ρ). Then ρ = ρ1 + ρ2, where ρi = ρ · fi supported on Vi . From
∫
S
ρ = 0, we obtain a constant

c =
∫
S
ρ1 = −

∫
S
ρ2. Choose a 2-form σ supported on V1 ∩ V2 such that

∫
S
ρ = c. Then setting ρ̃1 = ρ1 − σ

and ρ̃2 = ρ2+σ, we see that by induction hypothesis ρ̃i = dαi for some α1, α2. Then for the 1-form α = α1+α2,
we have ρ = dα as required.

§ 4 Complex differential forms

In the previous section, S was a smooth surface with no additional structure. At a point p ∈ S the cotangent
space T∗pS is defined so that a real-valued function f : S → R induces a cotangent vector [df]p (seen as an
R-linear map TpS → R). Likewise, we can consider the complexified cotangent space T∗PS

C = HomR(TPS,C)
defined so that a complex-valued function f : S → C induces a cotangent vector [df]P : TpS → C. This makes
sense for any surface S.

We now specialise to Riemann surfaces, where there is a distinguished class of holomorphic functions. What
does this extra structure buy us?

Definition 4.1. Let V be a real vector space. A complex structure on V is an R-linear map J : V → V such that
J2 = −Id. Given such a vector space with complex structure, we say an R-linear map A : V → C is complex
linear if A(Jv) = i ·A(v) for all v ∈ V and it is complex anti-linear if A(Jv) = −i ·A(v) for all v ∈ V .

The cotangent spaces of a Riemann surface are naturally equipped with a complex structure.

Lemma 4.2. Given a Riemann surface S and a point p ∈ S, there is a unique way to define a complex structure on
TpS such that the differential of any holomorphic function is complex linear.

Sketch proof. This is a consequence of the fact that on open sets in C, the map sending a holomorphic function
to its derivative is C-linear. Choosing a local complex coordinate z = x + iy around p, the complex structure
J : TpS → TpS then is given by multiplication by

√
−1 i.e. a tangent vector determined by a path γ : R → S

gets sent to the tangent vector [i · γ].

Let V be an R-vector space with a complex structure. Considering the ±i-eigenspaces, we have the following
useful piece of linear algebra: any R-linear map A : V → C can be written as a sum of a complex linear
map A ′ = 1

2
(A − i · A ◦ J) and a complex anti-linear map A ′′ = 1

2
(A + i · A ◦ J), thus giving an orthogonal

decomposition of HomR(V,C).

In the setting of Riemann surfaces, this gives a decomposition T∗pS
C = T∗pS

′ ⊕ T∗pS
′′ of the complexified

cotangent space into a complex linear part (the holomorphic cotangent space) and an anti-linear part (the anti-
holomorphic cotangent space) respectively. The complex structure on TpS was chosen such that for any holomor-
phic function f we have [df]p ∈ T∗pS ′ and [df]p ∈ T∗pS ′′.

§ 4.1 Decomposing 1-forms and exterior derivatives. The decomposition of the cotangent space extends
to the space of smooth complex 1-forms naturally, and we write Ω1(S,C) = Ω1,0(S) ⊕Ω0,1(S). The exterior
derivatives d : Ω0(S,C) → Ω1(S,C) and d : Ω1(S,C) → Ω2(S,C) decompose in a compatible fashion: there is
a commutative square

Ω0,1(S) Ω2(S,C)

Ω0(S,C) Ω1,0(S)

−∂(=−d)

∂̄

∂

∂̄(=d)

where the Dolbeault operators ∂, ∂̄ are given by composing d with the natural projectionsΩ1(S,C) → Ω0,1(S),Ω1,0(S).
In particular, we have d = ∂ + ∂̄ and ∂2 = ∂̄2 = 0. The construction is explicit on a chart– choosing a local
complex coordinate z = x + iy, the vectors dz = dx + idy and dz̄ = dx − idy give bases of T∗pS

′ and T∗pS
′′
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respectively for p in the chart. Given a complex function f on this chart, we can write

df =
1

2

(
∂f

∂x
− i

∂f

∂y

)
︸ ︷︷ ︸

∂f
∂z

dz+
1

2

(
∂f

∂x
+ i

∂f

∂y

)
︸ ︷︷ ︸

∂f
∂z̄

dz̄

which tells us how to define the operators ∂ and ∂̄ on Ω0S,C. Explicitly, we have ∂f = ∂f
∂z
dz and ∂̄ = ∂f

∂z̄
dz̄.

Likewise, computing the derivative d : Ω1(S,C) → Ω2(S,C) locally gives

d(f · dz+ g · dz̄) = ∂̄(f · dz) + ∂(g · dz̄)

=

(
∂g

∂z
−
∂f

∂z̄

)
dz∧ dz̄.

§ 4.2 Holomorphic 1-forms. A formal consequence of the definitions is that ∂̄f = 0 is locally the Cauchy–
Riemann equation, thus the subspace of holomorphic functions in Ω0(S,C) is precisely ker ∂̄. In particular for
a holomorphic function f, we have df = ∂f = f ′ · dz locally where f ′ is the usual complex derivative.

We extend this idea to define holomorphic 1-forms, which will be holomorphic complex linear forms.

Definition 4.3. A holomorphic 1-form is a (1, 0)-form satisfying ∂̄β=0.

Locally if β = f · dz, then β is holomorphic if and only if f is holomorphic.

Note for a holomorphic 1-form β we have dβ = ∂β + ∂̄β = 0, so holomorphic 1-forms are always closed.
This gives an analogue to Cauchy’s theorem: if Q ⊂ S is a surface with boundary, then by Stokes’ theorem we
have ∫

∂Q

β = 0.

Thus the integral of a holomorphic 1-form vanishes on any closed contour. The ‘meromorphic’ analogue is
as follows– let α be a meromorphic 1-form on S, i.e. a 1-form that is holomorphic on the complement of a
discrete subset D ⊂ S and is given locally as α = f · dz for some meromorphic function f (one checks this
notion is well-defined independent of chart). Choosing D minimal, the points of D give the poles of α. Let p
be a pole, C a small loop around p.

Definition 4.4. The residue of α at p is

Resp(α) =
1

2πi

∫
C

α

which is the usual residue in local coordinates (i.e. the coefficient of z−1dz in a Laurent series expansion of α.)

Proposition 4.5. Let α be a meromorphic 1-form on a compact Riemann surface S. Then the sum of the residues of
α over all poles is zero.

Proof. By compactness, the set of poles is finite say p1, ..., pn. Around each pj, choose a small disc Dj with
boundary given by a loop Cj. We have

n∑
j=0

Respj
(α) =

n∑
j=0

(
1

2πi

∫
Cj

α

)
=

1

2πi

∫
⋃

jCj

α.

Set S̃ to be the complement of D1∪ ...∪Dn. Then the boundary of S̃ is −
⋃
j Cj and α is a holomorphic 1-form

on S̃, so we have
∫⋃

jCj
α = −

∫
∂S̃
dα = 0.

§ 4.3 The Laplacian. Since d2 = (∂+ ∂̄)2 = 0, we have ∂∂̄ = −∂̄∂. This gives a canonical operator Ω0S → Ω2S
on a Riemann surface.

Definition 4.6. The Laplacian is defined to be ∆ = 2i · ∂∂̄. We say a function f is harmonic if ∆f = 0.

Choosing a local complex coordinate z = x+ iy, we have ∆f = −1
2
( ∂

2f
∂x2

+ ∂2f
∂y2 )dx∧ dy so this is just the usual

Laplacian (an operator that takes smooth functions to smooth functions) multiplied by a chosen volume-form.
The presentation using differential operators removes the choice of this volume form and makes the operator
canonical.

If f is holomorphic, then its real and imaginary parts are harmonic. Indeed, writing Re(f) = 1
2
(f + f̄), we see

that ∂∂̄(f+ f̄) = ∂∂̄f+ ∂∂̄f = 0, likewise for the imaginary part.
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Exercise 4.7. If φ is real valued and defined on a neighbourhood U ⊂ S of p, show that there is a U ′ ⊂ U

such that φ| ′U is the real part of a harmonic function on U ′. Thus every real function has a corresponding
imaginary ‘harmonic conjugate’.

Exercise 4.8 (Maximum principle). Suppose φ is non-constant, real valued, harmonic on a connected open set
U ⊂ S. Then show that for any x ∈ U there is a point x ′ ∈ U with φ(x ′) > φ(x).

Theorem 4.9 (Inverting the Laplacian). Suppose ρ is a 2-form on a compact surface S. Then
∫
S
ρ = 0if and only if

there is a smooth function f with ∆f = ρ, and if so fis unique up to the addition of a constant.

This is the main technical result of the course. We use it to prove the uniformisation theorem and the Riemann-
Roch theorem, which in turn can be used to show that compact Riemann surfaces are algebraic.

Remark 4.10. The result on inverting the Laplacian really applies to all elliptic linear partial differential opera-
tors on compact manifolds. In this context, the result is often called the ‘Fredholm alternative’.

§ 5 Topological applications

We will now study the applications of the theory developed– in particular the Euler characteristic, the Riemann–
Hurwitz theorem, and Dolbeault cohomology. We will later also look at analytic applications, solving Laplace’sLecture 5, 07/11/23

equation on a Riemann surface.

§ 5.1 The Euler characteristic. This is a purely topological notion. We will use some techniques from differ-
ential topology without proving them, and this will result in the lecture being a little sketchier. The goal is to
understand the topological genus of a Riemann surface through differential forms.

Let S be a smooth surface. We can triangulate it to define the Euler characteristic as

χ(S) = #{vertices}− #{edges}+ #{faces}.

The important fact is that this is independent of the triangulation chosen; one proves this by showing that the
Euler characteristic is invariant under refinement (subdivision) of the triangulation and that any two triangula-
tions admit a common refinement.

By explicit triangulation, one can calculate that the Euler characteristic of Σg (the compact surface of genus g)
is 2− 2g. In fact this is precisely how we define genus, i.e. for a surface S we have

g(S) = 1−
1

2
χ(S).

But the genus appears in other forms, for example in the first de Rham cohomology as we have seen previously.
We will see how the two notions are related. Suppose S is oriented, and let α be a 1-form such that the set
∆ ⊂ S where α vanishes is discrete. For any p ∈ ∆, we can choose local coordinates x1, x2 such that p = (0, 0)

and α = α1dx1 + α2dx2. Thus for small r > 0, the only zero of the function

(α1, α2) : B(0, r) → R2

is at the origin. In particular, when restricted to the boundary, (α1, α2)|∂B(0,r) gives a curve in R2 \0 which has
a well-defined winding number (the signed number of times the curve wraps around the origin anticlockwise).
One checks that this is independent of local coordinates (diffeomorphism invariance) and independent of choice
of r (homotopy invariance) since it is a continuous integer-valued function. Thus we can make sense of the
winding number of a 1-form around a point, also called the index of the 1-form at the point. Write νp(α) for this
number, noting that it can be computed in various ways for example by integrating dθ around (α1, α2)∂B(0, r)

in local polar coordinates.

Note that this notion makes sense even for p /∈ ∆, but if α(p) 6= 0 then we can choose r sufficiently small so
that (α1, α2) : B(0, r) → R2 does not hit the origin. Thus the winding number of the boundary curve around
the origin is necessarily zero.

Proposition 5.1 (Poincaré–Hopf theorem for smooth 1-forms). For S, α,∆ as above, the Euler characteristic of S
can be computed as

χ(S) =
∑
p∈∆

νp(α).
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Very sketchy proof. One could (dually, equivalently) use vector fields rather than 1-forms by fixing a volume form.
The result is then the usual Poincaré–Hopf theorem1.

One first uses the Gauss map to show that the number
∑
p∈∆ νp(α) is indepentent of α, see [Milnor, "Topology

from the differentiable viewpoint", Chapter 6]. This lets us choose a specific 1-form whose winding number we
can relate to the triangulation. In particular, given a triangle we choose a function f definedon a neighbourhood
which has minima on the three vertices, maxima in the interior of the face, and saddle points on the edges.
The zeroes of df are the critical points of f, precisely the seven points described above. Then the winding
number of df around a minimum or a maximum is +1 by an explicit calculation (using Taylor series, say), and
at a saddle point it is −1. One glues these functions to get a globally defined smooth function, and use its
differential to get the required computation.

On a compact Riemann surface S, we like holomorphic and meromorphic 1-forms. To a holomorphic 1-form
α, we associate a real 1-form A = 1

2
(α + ᾱ). Locally if α = f(z)dz, then A = 1

2
(f(z)dz + f̄(z)dz̄) hence A

vanishes if and only if α does. In particular A vanishes on a discrete set ∆ so can be used to compute the Euler
characteristic of S.

We will show that the index of A at p ∈ S computes the vanishing multiplicity of α at p (defined by writing
α = f(z)dz locally), written mp(α). This will give the following version of the Poincaré–Hopf formula.

Proposition 5.2 (Poincaré–Hopf theorem for holomorphic 1-forms). For S a compact Riemann surface with a
holomorphic 1-form α vanishing on a discrete set ∆, we have∑

p∈∆
mp(α) = −χ(S).

Proof. Say f = f1dz + if2dz for smooth real functions f1, f2, and local coordinate z = x + iy. Then we see
that A = f1dx − f2dy, i.e. the winding number of A around p ∈ ∆ is the negative of the winding number of
(f1, f2) = f : ∂B(0, r) → R2. Now by the argument principle, this number −νp(A) is equal to the vanishing
multiplicity of f(z) at p. Thus the total number of zeros of α with multiplicity is 2g− 2 = −χ(S).

Note this quantity has to be positive. Thus if g = 0 there are no holomorphic 1-forms at all. If g = 1, any
holomorphic 1-form would have to be nowhere vanishing (and indeed such 1-forms exist).

Holomorphic 1-forms are too restrictive. Instead we consider meromorphic 1-forms. Fix a volume-form ω on
S, locally given by ig(z)dz∧dz̄ for a positive function g. This gives a hermitian metric on T∗S: for a cotangent
vector v ∈ T∗pS, we define |v|2 so that v∧ v̄ = |v|2ω(p). Note |v|2 ⩾ 0, and it vanishes if and only if v = 0.

Let α be a meromorphic 1-form on S. Choose a real-valued function ρ on R with ρ(t) = 1 for small t and
ρ(t) = t−1 for large t. Define a new differential form α̃ satisfying α̃ = ρ(|α|2)α away from the poles of α, and
α̃ = 0 at poles of α. Then locally near a pole of α, we have

α̃ =
1

|f(z)|2
f(z)R · dz = f̄(z)−1R · dz

where R is a smooth positive function. In particular this is a smooth 1-form that vanishes at the poles. Thus
the zero set of α̃ is the set of zeros and poles of α. Moreover, at a pole of order d of α, α̃ has index −d since f̄
is anti-holomorphic. This gives us the following.

Corollary 5.3. If α is a nontrivial meromorphic 1-form on a compact Riemann surface of genus g, then the number
of zeros of α minus the number of poles of α (counted with multiplicity) is 2g− 2.

§ 5.2 Riemann–Hurwitz formula. The results of the previous section allow for a quick proof of this classical
result. Let f : X → Y be a nonconstant holomorphic map between compact Riemann surfaces. We defined a
multiplicity kx associated to each x ∈ X such that locally the map is z 7→ zkx , with kx = 1 at all points except
for a finite set of ramification points.

Definition 5.4. The ramification index of f is defined to be Rf =
∑
x∈X(kx − 1), noting that the sum is finite.

We also defined the degree d of f, the number of points in any preimage counted with multiplicity. These
quantities are related as follows.

Theorem 5.5 (Riemann–Hurwitz). The genera gX of X and gY of Y are related as

2− 2gY = d(2− 2gX) − Rf.

1One of the consequences of the Poincaré–Hopf theorem is the hairy ball theorem.
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Proof. We will prove this assuming that there is a meromorphic 1-form on β on Y. This is a harmless as-
sumption, we will later use the Riemann–Roch theorem to prove that this always holds for every Riemann
surface.

Given this, f∗β is a meromorphic 1-form on X. If x ∈ X is a point around which f looks like z 7→ zk, then
writing β = g(w)dw locally around f(x) gives f∗β = kzk−1g(zk)dz. Thus if β has a zero of order ℓ at y=f(x),
then f∗β has a zero of order kℓ+ k− 1 at x. So the contribution to the count of zeros and poles of f∗β coming
from y is ∑

x∈f−1(y)

(kxℓ+ kx − 1) = d · ℓ+
∑

x∈f−1y

(kx − 1).

The result follows from the formula of Euler characteristic in terms of meromorphic 1-forms.

Exercise 5.6. Another application is the ‘degree–genus formula’, which states that given a surface S ⊂ P2

defined using a homogeneous degree d polynomial, we have g(S) = 1
2
(d− 1)(d− 2). As a corollary, one notes

that not all Riemann surfaces can be embedded in P2.

§ 5.3 Dolbeault cohomology. We continue to relate complex differential forms to geometry. Recall that we
used the exterior derivative d : Ωq(S) → Ωq+1(S) to define the de Rham cohomology.We now use the operator
∂̄ : Ωp,q(S) → Ωp,q+1(S) to define Dolbeault cohomology, where Ωp,q(S) ⊂ Ωp+q(S) is the space of (p, q)-
forms on S. For example, Ω0,0(S) is the space of complex functions on S, while Ω0,1(S) is the space of 1-forms
locally given by fdz̄ for a complex function f.

Definition 5.7. The Dolbeault cohomology groups of S are

H0,0(S) = ker(∂̄ : Ω0,0(S) → Ω0,1(S))

= {global holomorphic functions}

H1,0(S) = ker(∂̄ : Ω1,0(S) → Ω1,1(S))

= {global holomorphic 1-forms}

H0,1(S) =
Ω0,1(S)

im(∂̄ : Ω0,0(S) → Ω0,1(S))

H1,1(S) =
Ω1,1(S)

im(∂̄ : Ω1,0(S) → Ω1,1(S))
.

Exercise 5.8. For S = C, note that H1(S) = 0 but H1,0(S) is infinite dimensional. Now consider a (0, 1)-form
on C of the form fdz̄. Show that there is a complex function g on C with ∂̄g = fdz̄. So H0,1(C) = 0. This is
called the ∂̄–Poincaré lemma.

Note that while we have good geometric interpretations of H0,0 and H1,0, interpreting H0,1 takes a bit more
work. Suppose we try to find a meromorphic function on a Riemann surface S with a simple pole at p ∈ S and
no other poles. This would, for instance, show that S ∼= P1. Finding such a function locally is trivial– just pick
a local coordinate z in a neighbourhood U 3 p and choose the function 1

z
. Let β be a smooth cut-off function

near p (i.e. a real function supported on U and equal to 1 near p). So β(1
z
) induces a smooth function on S\{p}.

We want a smooth function g on S such that g+β(1
z
) is holomorphic on S \ {p}. Now A = ∂̄β(1

z
) has compact

support in U \ {p} (since β = 1 near p), and we can extend A to a (0, 1)-form on S by extending by zero over
p. So we want to solve ∂̄g = −A for A ∈ Ω0,1(S), and a solution exists if and only if the class [A] ∈ H0,1(S)
equals zero.

Corollary 5.9. Suppose S is a compact Riemann surface with H0,1(S) = 0. Then S ∼= P1.

Theorem 5.10. Let S be a compact Riemann surface. We have the following operations and compatibilities on
Dolbeault cohomology.

1. The map σ : H1,0(S) → H0,1(S), taking a global holomorphic one-form α to its conjugate ᾱ, is a complex
anti-linear isomorphism.

2. The bilinear map B : H1,0(S)×H0,1(S) → C given by B(α, [θ]) =
∫
S
α∧ θ is a perfect pairing. In particular

there is an isomorphism H0,1(S) ∼= (H1,0(S))∗.

3. The map H1,0(S) ⊕ H0,1(S) → H1(S) defined by (α, θ) 7→ ι(α) + ι(σ−1θ) is an isomorphism, where
ι : H1,0(S) → H1(S) sends a holomorphic 1-form to its cohomology class.

4. The map γ : H1,1(S) → H2(S) defined by the natural inclusion im(∂̄ : Ω0,1 → Ω2) ⊂ im(d : Ω1 → Ω2) is
an isomorphism.
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Proof. These are all consequences of inverting the Laplacian. We first show σ is surjective. Given [θ] ∈ H0,1(S)
we want a θ ′ = θ+ ∂̄f with ∂θ ′ = 0, since then α = θ ′ is a holomorphic 1-form and [θ] = σ(α). So we want to
solve ∂∂̄f = −∂θ. But since

∫
S
∂θ = 0, we can invert the Laplacian ∂∂̄ = 1

2
i∆ to produce f.

The composition of σ with B is, up to a factor, the Hermitian pairing 〈α,β〉 =
∫
S
α ∧ β̄ which is positive

definite. So B is a perfect pairing and σ is injective.

The remaining two can be proved similarly, and are left as exercises.

We can now relate the topological genus to complex geometry.

Corollary 5.11. For a compact Riemann surface S of genus g, we have dimH1,0(S) = dimH0,1(S) = g.

§ 6 Inverting the Laplacian
Lecture 6, 14/11/23

Having seen the utility of theorem 4.9, we will now repay the technical debt and look at its proof. This will
invoke key results from functional analysis which we will recall as necessary.

§ 6.1 The Dirichlet norm. Let S be a Riemann surface, α ∈ Ω1,0(S) given locally by fdz for f a smooth
C-valued function. Then iα∧ ᾱ is a (1, 1)-form on S given locally as i · |f|2dz∧ dz̄ = |f|2dx∧ dy. In particular
this is a non-negative real 2-form hence we have

||α||2 :=

∫
S

iα∧ ᾱ ⩾ 0.

When α has compact support, this quantity is finite and thus defines a norm on the space of compactly
supported (1, 0)-formsΩ1,0C (S). This norm is induced by the hermitian inner product 〈α,β〉 =

∫
S
iα∧β̄.

Fixing a volume-form (i.e. a nowhere vanishing real 2-form) ω, we can define a pointwise norm |α|2 ∈ Ω0(S),
characterised by the property iα ∧ ᾱ = |α|2ω. Then we have ||α||2 =

∫
S
|α|2ω, i.e. the norm on Ω1,0C (S,C)

comes from the L2-norm on Ω0C(S,R). The norm on (1, 0)-forms is on the other hand independent of the
choice of volume-form.

Recall there is an isomorphism Ω1,0(S) ∼= Ω0,1(S) given by complex conjugation, and there is an orthogonal
decomposition Ω1(S,C) = Ω1,0(S) ⊕ Ω0,1(S). Writing α1,0 and α0,1 for the two components of a com-
plex 1-form α with respect to this decomposition, we can naturally extend the norm above to Ω1C(S,C) as
||α||2 = ||α1,0||2 + ||α0,1||2. Here ||α0,1|| is by definition ||α0,1||.

The space of compactly supported real 1-forms is naturally the subspace {α ∈ Ω1C(S,C) | α1,0 = α0,1}. Thus
the norm restricts, and Ω1C(S,R) has an inner product and a norm given as

〈A,B〉 = 2i
∫
S

A1,0 ∧ B0,1, ||A||2 = 2||A1,0||2.

We can then use the exterior derivative to induce a norm on the space of smooth real-valued functions.

Definition 6.1. The Dirichlet inner product on Ω0C(S,R) is given by 〈f, g〉D := 〈df, dg〉. This induces the
Dirichlet norm, given by ||f||D = ||df||. These definitions can also be made for the complex vector space
Ω0(S,C) analogously.

Note that the Dirichlet inner product (norm) is not an inner product (resp. norm) since, for instance, any non-
zero constant function f satisfies ||f||D = 0. Conversely if ||f||D = ||df|| vanishes, then df = 0 since || · || is a
norm on Ω1C(S,C) and hence f is constant. Thus it makes sense to consider the space Ω0C(S,R)/R where we
quotient out the subspace of constant functions.

Proposition 6.2. The Dirichlet inner product (norm) is an inner product (resp. norm) on Ω0C(S,R)/R and turns it
into a pre-Hilbert space (i.e. a vector space equipped with an inner product).

We remark that the definition of the Dirichlet inner product makes sense even when just one of the arguments
has compact support.

Lemma 6.3. If f, g are smooth functions on S and f has compact support, then 〈f, g〉D =
∫
S
f · ∆g =

∫
S
∆f · g.

Proof. A partition of unity argument reduces this to the local case. We then have 〈f, g〉D = 2i
∫
S
∂f ∧ ∂̄g,

so writing ∂f ∧ ∂̄g = ∂(f∂̄g) − f · ∂∂̄g and using Stokes’ theorem gives the required result. Note this is just
integration by parts.
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We can now prove one direction of theorem 4.9.

Corollary 6.4. Let S be a compact Riemann surface with a real 2-form ρ. Then up to adding a constant there is at
most one f ∈ Ω0(S,C) satisfying ∆f = ρ, and such an f exists only if

∫
S
ρ = 0.

Proof. To show uniqueness of the solution, we show ∆f = 0 (if and) only if f is a constant. Indeed we have∫
S
f∆f = ||f||2D, which vanishes if and only if df = 0 (i.e. f is constant) by properties of norms.

If ρ = ∆f for some function f, then
∫
S
ρ = 2i

∫
S
∂∂̄f = 2i

∫
S
d(∂f) which vanishes by Stokes’ theorem.

§ 6.2 The heart of the proof. Our goal is to show that a real 2-form ρ on a compact Riemann surface S that
satisfies

∫
S
ρ = 0 is in the image of ∆. Suppose

∫
S
ρ = 0, and consider the pre-Hilbert spaceΩ0(S,R)/R.

Exercise 6.5. For f ∈ Ω0(S,R), we have ∆f = ρ if and only if for all g ∈ Ω0(S,R),
∫
S
g(ρ− ∆f) = 0.

Now we know for all f, g in this space, we have
∫
S
ψ(ρ− ∆φ) =

∫
S
ψρ− 〈φ,ψ〉D. In particular, ∆f = ρ if and

only if
∫
S
gρ = 〈f, g〉D for all g. This reduces the problem to studying the linear operator

ρ̂ : Ω0(S,R)/R → R, g 7→
∫
S

gρ

which is well-defined since
∫
S
ρ = 0. Claim this is a bounded linear operator on Ω0(S,R)/R and hence extends

to the metric completion H = (Ω0(S,R)/R)∧ which is the Hilbert space whose points are given by equivalence
classes of Cauchy sequences in Ω0(S,R)/R.

Then the Riesz representation theorem states that every bounded linear operator on H is of the form 〈·, f〉D for
some f ∈ H, thus giving a weak solution to the problem– we have an f ∈ H such that ρ̂(g) = 〈f, g〉D for all g.
Finally, we claim that f is in fact in Ω0(S,R)/R, i.e. f is smooth. This finishes the proof of theorem 4.9.

§ 6.3 The boundedness claim. We first prove an analytic result about smooth functions on R2. Let U ⊂ R2

be a bounded convex open set of diameter d and area A with respect to the standard Lebesgue measure dµ.
For a smooth function φ defined on an open set containing Ū, write φ̄ = 1

A

∫
U
φdµ for its average. We show

the deviation of φ from its average is bounded.

Lemma 6.6 (Poincaré inequality). For U,d,A,φ as above and x ∈ U, we have

|φ(x) − φ̄| ⩽ d2

2A

∫
y∈U

|∇φ(y)|
|x− y|

dµ.

Proof. Up to translation and adding a constant, we can assume x = 0 is the origin and φ(0) = 0 so we have to
bound |φ̄|. Since U is convex, we can use polar coordinates to write φ̄ = 1

A

∫2π
0

∫R(θ)
0

φ(r, θ)rdrdθ. Moreover,
we can write φ(r, θ) =

∫r
0
∂φ
∂s

(s, θ)ds since φ(0) = 0. Thus we have

φ̄ =
1

A

∫2π
θ=0

∫R(θ)
r=0

∫r
s=0

∂φ

∂s
(s, θ)rdsdrdθ

=
1

A

∫2π
θ=0

∫R(θ)
s=0

(∫R(θ)
r=s

rdr

)
∂φ

∂s
(s, θ)dsdθ

and
∫R(θ)
r=s rdr =

1
2
(R(θ)2 − s2) ⩽ 1

2
R(θ)2 ⩽ 1

2
d2. Additionally, we know |∂ψ

∂s
| ⩽ |∇φ| so putting these together,

we have the required inequality

|φ̄| ⩽ d2

2A

∫2π
θ=0

∫R(θ)
s=0

|∇φ(s, θ)| · 1
s
sdsdθ

⩽ d2

2A

∫
y∈U

|∇φ(y)|
|y|

dµ.

Corollary 6.7. Under the hypotheses above, we have∫
U

|φ− φ̄|2dµ ⩽ d2π

2A

∫
U

|∇φ|2dµ.
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Proof. This is essentially a consequence of Yang’s inequality on convolutions– for functions g, h on R2 such
that g is integrable and h is square-integrable, we have

||g ∗ h||L2 ⩽ ||g||L1 · ||h||L2

where g ∗ h(x) =
∫
y∈R2 g(y)h(x − y)dµ is the convolution of g and h, and || · ||L1 , || · ||L2 denote the L1 and L2

norms respectively. Convolution ∗ is a commutative and associative operation whenever defined.

To prove the corollary we choose g(x) = d2

2A
1
|x|

if 0 < |x| < d and 0 otherwise, noting this is discontinuous but

nonetheless integrable with ||g||L1 = d3π
A
. Likewise, choose h(x) = |∇φ(x)|2 for x ∈ U and 0 otherwise. Then

g ∗ h is a positive function on R2 and the Poincaré inequality says |φ(x) − φ̄| ⩽ |g ∗ h(x)| for all x ∈ U. In
particular

∫
U
|φ− φ̄|2dµ ⩽ ||g ∗ h||2

L2 , so Yang’s inequality gives the result.

We can now show ρ̂ : Ω0(S,R)/R → R given by g 7→
∫
S
gρ is a bounded operator. We first reduce to the case

when ρ is supported in a single coordinate chart– since integration over S defines an isomorphism H2(S) ∼= R,
we know [ρ] =

∫
S
ρ = 0 i.e. ρ = dθ for some 1-form. By compactness of S, we can use a partition of unity

argument to write θ = θ1+ ...+θn where each θi is a 1-form supported on a bounded convex coordinate chart.
Then each ρi = dθi is a 2-form supported on such a chart, satisfies

∫
S
ρi = 0, and we have ρ = ρ1 + ... + ρn.

Thus ρ̂ = ρ̂1 + ...+ ρ̂n, and it suffices to show each operator ρ̂i is bounded.

Assume ρ is a 2-form supported on a bounded convex coordinate chart U ⊂ R2. Using the standard nowhere-
vanishing volume form dx ∧ dy, we can identify 2-forms with functions so that ρ = hdx ∧ dy for a smooth
function h supported on U. A function φ ∈ Ω0(S) induces a function on U by restriction, and we have

|ρ̂(φ)| =

∣∣∣∣ ∫
U

hφdµ

∣∣∣∣ = ∣∣∣∣ ∫
U

h(φ− φ̄)dµ

∣∣∣∣ ⩽ ||h||L2(U) · ||φ− φ̄||L2(U)

where we recall
∫
U
hφ̄dµ = φ̄

∫
U
hdµ = 0 and use the Cauchy–Schwartz inequality. Thus the corollary gives

us

|ρ̂(φ)| ⩽ d2π

2A
· ||h||L2(U) · ||∇φ||L2(U).

Lastly, note that ||∇φ||L2(U) ⩽ ||dφ||L2(X) = ||φ||D and write C = d2π
2A

· ||h||L2(U) so that we have the required
inequality

|ρ̂(φ)| ⩽ C · ||φ||D

§ 6.4 The regularity claim. Riesz’s representation theorem gives us a sequence of functions f1, f2, ... that is
Cauchy with respect to the Dirichlet norm, such that for any g ∈ Ω0(S,R) we have limi→∞〈fi, g〉D = ρ̂(g).

We first show that the sequence (fi) converges to an L2 function on S. This is easy locally– on any coordinate
chart U we may assume fi has integral zero by adding a constant, so that we have ||fi−fj||L2(U) ⩽ C · ||fi−fj||D
by corollary 6.7. Thus the sequence is Cauchy with respect to the L2 norm which is complete on the space of
square-integrable functions.

To show the sequence is Cauchy in L2(S), suppose U,V are open coordinate charts with U ∩ V 6= ∅ and (fi)

converges in L2(U). We know there are constants c1, c2, ... such that (fi + ci) converges in L2(V), and up to
adding a fixed constant to each ci, we may also assume the two limits agree on L2(U ∩ V). But this implies
ci → 0 so in fact we could have chosen ci = 0 to begin with. Since S is connected, it follows that the sequence
(fi) converges in the L2 norm locally on each chart, and hence converges to some f ∈ L2(S).

It remains to show f is smooth, which can be done locally. This is then the content of the following result.

Proposition 6.8 (Weyl’s lemma). Suppose U is a bounded open set in C and ρ ∈ Ω2(U) is a smooth 2-form. If
f ∈ L2(U) is such that for any smooth compactly supported function g we have

∫
U
(∆f)g =

∫
U
gρ then f is smooth

and satisfies ∆f = ρ.

Proof. Omitted, see [Don04]. The first step is to reduce to ρ = 0 by convolutions, so that we have a weakly
harmonic function f (i.e. an L2 function such that ∆f = 0 in a weak sense). Then we want to show that weakly
harmonic functions are smooth, which we do by finding an explicit inverse to the Laplace operator in terms of
convolutions.
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§ 7 The Riemann–Roch theorem
Lecture 7, 21/11/23

Let S be a compact Riemann surface of genus g, and let D = {p1, ..., pd} be a set of distinct points in S.

Definition 7.1. We denote by H0(D) the vector space of meromorphic functions on S with at worst a simple
pole at each pj. Write H0(K−D) for the vector space of holomorphic 1-forms vanishing at each pj.

The cohomological notation will be explained later. For now, these are complex vector spaces keeping track of
functions and 1-forms with interesting properties and the Riemann–Roch theorem will relate their dimensions.
A partial result in the form of an inequality was first proven by Riemann, and Roch subsequently completed
the work by computing the error term. This, together with its many generalisations (the Hirzebruch–Riemann–
Roch theorem, the Grothendieck–Riemann–Roch theorem, and the Atiyah–Singer index theorem) is one of the
most fundamental results of algebraic geometry.

Theorem 7.2 (Riemann–Roch). For S,D as above, we have dimH0(D) − dimH0(K−D) = d− g+ 1.

This is typically shown using algebro-geometric methods (Serre duality), but we don’t know that S has an
algebraic structure yet. In fact we will use this result to show all compact Riemann surfaces are algebraic, so
our proof of the Riemann–Roch theorem will be analytic.

§ 7.1 (0, 1)–cohomology classes control meromorphic functions. To motivate the proof, we revisit a con-
struction from before. Suppose we want to construct a meromorphic function f on S with exactly one pole,
simple at p ∈ S. We can easily find a smooth function ψ ∈ Ω0(S \ {p},C) that is meromorphic near p with a
simple pole; for instance by taking the function 1

z
in a local chart and extending globally by multiplying with

a cutoff function β which is 1 near p and vanishes outside a neighbourhood of p. The problem is thus reduced
to finding a smooth function g ∈ Ω0(S,C) such that g−ψ is holomorphic on S \ {p}, or equivalently ∂̄g = ∂̄ψ

on S \ {p}.

Consequently consider the smooth (0, 1)-form A = ∂̄ψ, which vanishes near p (since ψ is holomorphic there)
so extends by 0 across p to give a global form on S. We want to find g ∈ Ω0(S,C) which solves ∂̄g + A = 0,
the obstruction to this is precisely the class [A] ∈ H0,1(S) and we have a solution if and only if [A] = 0.
But even if [A] 6= 0, this obstruction class is defined (up to scaling) independently of choice of ψ. Indeed if
φ ∈ Ω0(S \ {p},C) is meromorphic near p with a simple pole, then for some λ ∈ C (given by the residue) we
have that φ− λψ is smooth everywhere (including near p) so [∂̄φ] = λ[∂̄ψ] ∈ H0,1(S). Thus the obstruction to
finding a global meromorphic function is well-defined (up to scaling) as a (0, 1)-Dolbeault cohomology class.
Moreover we can represent this class by a (0, 1)–form ∂̄ψ for ψ supported on a small punctured neighbourhood
of p, smooth away from p.

For multiple distinct points p1, ..., pd ∈ S, we get (0, 1)–forms Aj = [∂̄ψj] supported near pj from the above
construction. Similar arguments show we can find a meromorphic function with simple poles precisely on
the pi provided there are λj ∈ C \ 0 with λ1[A1] + ... + λd[Ad] = 0 in H0,1(S). Indeed, in that case
ψ =

∑
j λjψj ∈ Ω0(S \ {p1, ..., pd},C) is non-zero and meromorphic with a simple pole near each pj, and

∂̄ψ extends to a global (0, 1)–form that is cohomologically trivial. Thus there is a smooth function g with
∂̄ψ = ∂̄g on S \ {p1, ..., pd} and ∂̄g(pj) = 0, so that g−ψ is the required meromorphic function.

We can immediately use this reasoning to prove some results.

Corollary 7.3. Suppose S has genus g. Then given g+ 1 points p1, ..., pg+1 in S, there is a meromorphic function on
S with at worst simple poles, at least one pole, and smooth away from p1, ..., pg+1.

Proof. We know H0,1(S) has dimension g, so any g+ 1 elements of H0,1(S) must be linearly dependent.

In particular, we have a classification of compact Riemann surfaces of genus 0.

Corollary 7.4. Suppose S has genus 0. Then S is biholomorphic to the Riemann sphere.

Proof. Indeed then H0,1(S) = 0, so we can find a meromorphic function with a simple pole which gives the
required biholomorphism.

§ 7.2 The residue map. The second important ingredient in proving the Riemann–Roch theorem is the
concept of residues. What is the residue of a meromorphic function f at a point p ∈ S? In a local coordinate
z, if f(z) =

∑
i aiz

i then the residue is a−1. With respect to another local coordinate w = λ1z + λ2z
2 + ...,
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the residue is λ1a−1. Noting that ∂
∂z

= λ1
∂
∂w

∈ Tholp S (the holomorphic tangent space2), we thus see that the
quantity a−1 ∂∂z ∈ Tholp S is independent of coordinates, and this is what we call the residue of f at p.

§ 7.3 The obstruction-class map. For similar reasons, we can also define the obstruction-class at p ∈ S from
the previous section as a map A : Tholp S→ H0,1(S) by first fixing a smooth cutoff function β, and then mapping
∂
∂z

7→ [∂̄β · 1
z
]. Indeed for a different local coordinate w = λ1z+λ2z

2+ ..., we see that 1
z
−λ1

1
w

is holomorphic
near p so [∂̄β · 1

z
] = λ1[∂̄β · 1

w
].

We examine the dual map AT : H0,1(S)∗ → (Tholp S)∗. Recall we can identify H1,0(S) with H0,1(S)∗ via the
perfect pairing (α,β) 7→

∫
S
α ∧ β. Note also that (Tholp S)∗ is simply the holomorphic cotangent space T1,0p S.

But there is an obvious evaluation map ev : H1,0(S) → T1,0p S sending a holomorphic 1-form to its value at p,
and we now show that AT is essentially this.

2The holomorphic tangent space can be defined as follows. Recall that the tangent space TpS at p ∈ S has a natural complex structure
J : TpS → TpS, which extends to a C-linear complex structure J : TpS⊗ C → TpS⊗ C by writing J(v+ iw) = J(v) + iJ(w) for
v,w ∈ TpS. Then J2 = −Id so J has eigenvalues ±i, and the holomorphic tangent space is the +i–eigenspace. Equivalently, one
can check that this is precisely the subspace of TpS⊗ C where all anti-linear cotangent-vectors (i.e. elements of T0,1p S vanish.) In local
coordinates, the holomorphic tangent space has vectors of the form ∂

∂z for z = x+ iy a local holomorphic coordinate.
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Lemma 7.5. Under the identifications above, AT = 2πi · ev.

Proof. This is a local result, so choose a coordinate z. Given a (1, 0)-form α, we see that AT (α) sends the
tangent vector ∂

∂z
to 〈α,A ∂

∂z
〉 =

∫
S
α ∧ (∂̄β · 1

z
). But if α is locally g(z)dz, we see that the integral becomes∫

C ∂̄β · g(z)
z
dz (noting that β is supported on the coordinate chart around p). Choose a circle γ around p on

which β = 1, so that Stokes’ theorem gives us∫
C
∂̄β · g(z)

z
dz =

∫
γ

g(z)

z
dz.

By Cauchy’s residue theorem, this is 2πi · g(p) as required.

We can now prove the Riemann–Roch theorem. All (co)-tangent spaces considered in the rest of this section
will be holomorphic (hence of C-dimension one) and we will simply write TpS instead of Tholp S and likewise T∗pS
instead of T1,0p S.

Proof of the Riemann–Roch theorem. For a collection of points D = {p1, ..., pd} ⊂ S, we have a residue map
R : H0(D) →

⊕d
j=1 Tpj

S defined in the obvious way. The kernel of this map is the space of global holomorphic
functions, which are all constant since S is compact.

Likewise, we have a map A :
⊕d
j=1 Tpj

S → H0,1(S) coming from obstruction-classes. We showed that
A(v1, ..., vd) = 0 if and only if (v1, ..., vd) are the residues of a meromorphic function in H0(D), i.e. that
the kernel of A is precisely the image of R. This gives us an exact sequence

0→ C → H0(D)
R−→

d⊕
j=1

Tpj
S
A−−→ H0,1(S).

The proof is now linear algebra– we have dim im(A) + dimH0(D) = d + 1 from the exact sequence, and
dim im(A) = dimH0,1(S) − dim kerAT . Lastly, note that AT : H1,0(S) →

⊕d
j=1 T

∗
pj
S is the evaluation map, so

its kernel is precisely H0(K−D). The result follows.

§ 8 The uniformisation theorem

Theorem 8.1 (The uniformisation theorem). Let S be a non-compact simply connected Riemann surface. Then S is
biholomorphic to either C or the upper half plane H.

Note we have already shown any simply connected compact Riemann surface must be biholomorphic to P1.
Since the universal cover of any Riemann surface is a simply connected one, we have the following classification
result.

Corollary 8.2. Any Riemann surface is biholomorphic to one of the following.

(i) The Riemann sphere P1;

(ii) the complex plane C;

(iii) the punctured plane C \ {0} ∼= C/Z;

(iv) a quotient C/Λ where Λ ⊂ C is a lattice; or

(v) a quotient H/Γ where Γ ⊂ PSL(2,R) = AutH is a discrete group acting freely on H.

Proof. Indeed, any Riemann surface is a quotient of its universal cover by an action of its fundamental group
and the uniformisation theorem which surfaces can arise as universal covers. Examining their automorphism
groups gives the result.

To prove the uniformisation theorem, we need the following analytic result which allows us to invert Laplacians
on S (this time non-compact).

Theorem 8.3. Let S be a connected, simply connected, non-compact Riemann surface. If ρ is a real 2-form of compact
support on S with

∫
S
ρ = 0, then there is a real function φ on S with ∆φ = ρ such that φ→ 0 at infinity.

Here we say φ → 0 at infinity in S if for all ϵ > 0 there is a compact K ⊂ S such that |φ(x)| < ϵ for all x /∈ K.
The proof is omitted, see [Don04]. It is similar to inverting the Laplacian in the compact case, and the simply
connectedness provides compensation for the non-compactness.
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Proof of the uniformisation theorem. Let S be a non-compact simply connected Riemann surface. As before, we
construct a meromorphic function (viewed as a map to P1) and examine its image.

There is a meromorphic function f with a simple pole. Fix p ∈ S, z a local coordinate around p, and A = ∂̄ · 1
z

a (0, 1)-form with β a cutoff function. Let ρ = ∂A so that ρ is a complex 2-form with integral zero (Stokes’
theorem). Thus by the theorem applied to the real and imaginary parts of ρ separately, we can find g with
∆g = ρ such that the real and imaginary parts of g tend to 0 at infinity.

Let a be the real part of A−∂̄g. This is a (0, 1)-form so ∂̄a = 0. Since ∂(A−∂̄g) = 0, we have da = 0. Thus since
H1(S) = 0 (by simply connectedness), there is a real valued φ satisfying dφ = a. So dφ = (A− ∂̄g)+ (Ā− ∂̄g),
A = ∂̄g+ ∂̄φ, and ∂̄(β · 1

z
− (g+φ)) = 0. This gives us the required meromorphic function f = β · 1

z
− g−φ

with a simple pole at p, such that the imaginary part of f tends to zero at infinity.

The map f is injective. Let ±H denote the (open) upper and lower half-planes in C ⊂ P1, and let S± = f−1(±H)

denote their preimages so that S+ ∪ S− is a dense open set in S (noting that f is an open map). Note S± are
non-empty, since p is a simple pole i.e. f is a local homeomorphism between neighbourhoods of p ∈ S and∞ ∈ P1.

Claim f± : S± → ±H is surjective. Since we know it is an open map, it suffices to show it is also proper.
We do this explicitly– if B ⊂ H is compact then there is an ϵ > 0 such that Im(z) > ϵ for all z ∈ B. Then
f−1(B) = f−1+ (B) is compact since Imf tends to zero at infinity. Similarly f− is proper.

We can now show f± : S± → ±H is injective. Since f+ is a holomorphic map between Riemann surfaces,
we know it has a degree which is (locally) constant on H. Showing injectivity is equivalent to showing this
degree is 1, so suppose f+ has degree d+ ⩾ 2. By surjectivity of f+, we see that for all n ∈ N⩾0 we can
find xn, x̃n ∈ S+ with f(xn) = f(x̃n) = in so either xn, x̃n are distinct or f ′(xn) = 0. Since f tends to zero
at infinity, the sequences (xn), (x̃n) lie in a compact set K and hence converge to x, x̃ respectively. But the
sequence (in) converges to ∞ ∈ P1, so f(x) = f(x̃) = ∞ and hence x = x̃ = p. This contradicts f being a local
homeomorphism with non-vanishing derivative on a neighbourhood of p.

So f maps S± bijectively onto the open upper and lower half planes. This allows us to conclude f : S → P1

is injective. Indeed if x1, x2 ∈ S are such that f(x1) = f(x2) = z ∈ P1 then we can find disjoint discs D1, D2
around x1, x2 and a neighbourhood N 3 z such that N ⊂ f(D1) ∩ f(D2). Choose z ′ ∈ N ∩ H, this gives us
distinct x ′1 ∈ D1 and x ′2 ∈ D2 with f(x ′1) = f(x ′2) = z ′ contradicting that f is injective on S+.

The image of f is biholomorphic to C or H. We have shown f : S→ P1 is injective and biholomorphic onto its
image, which is an open set containing H∪−H∪ {∞} = P1 \R. Since S is connected and simply connected, we
conclude that P1\f(S) is a compact interval I in R ⊂ P1. If I contains a single point, then f(S) is biholomorphic
to C and if I has nontrivial length, then f(S) is biholomorphic to H (by writing down an explicit Möbius map).
This concludes the proof.

This concludes the main theory of the course, the study of meromorphic functions on Riemann surfaces.

§ 9 Line bundles and divisors
Lecture 8, 28/11/23

The terminology of meromorphic functions is seldom used in modern algebraic geometry. Instead, a gener-
alised theory of line bundles and sections is used. These relate, for example, to the theory of embeddings into
projective space.

Let f1, ..., fn be meromorphic functions on a compact Riemann surface S, and let ∆ ⊂ S be the (finite) set of
poles outside which every fj is holomorphic. Thus we have a holomorphic map S\∆→ Cn, where ‘holomorphic’
means holomorphic in each variable separately.

Exercise 9.1. Show this can be extended to a holomorphic map from S to Pn = Cn ∪ Pn−1. Here we use a
natural definition of holomorphic– the standard charts on Pn cover Cn with holomorphic transition functions,
and a smooth map is holomorphic if it is holomorphic locally.

Instead of understanding this map near ∆, the theory is clearer if we work with line bundles.

Definition 9.2. A rank r holomorphic vector bundle over a Riemann surface S is given by an r+1-dimensional
complex manifold E with a holomorphic map p : E → S such that for each x ∈ S, the fiber p−1(x) = Ex has
the structure of a complex vector space Cr and there is an open set U ⊂ S containing x with a holomorphic
and fiberwise linear isomorphism E|U ∼= U× Cn.

We think of the fibers Ex as ‘varying holomorphically with x ∈ S’. We will be interested in line bundles, where
the rank r is 1.
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There are two further ways to think about vector bundles– first through transition functions. If {Uα} is a
cover of S which trivialises E, then we get two trivialisations on each intersection Uα ∩ Uβ. Namely we have
E|Uα

∼= Uα×Cn and E|Uβ
∼= Uβ×Cn, and on the intersection these differ by a holomorphic endomorphism of

(Uα×Uβ)×Cn that is fiberwise linear. Thus we get a holomorphic map φαβ : Uα ∩Uβ → GL(r,C) satisfying
φαα = id, φαβ = φ−1

βα, and φαγ = φαβ ◦ φβγ on triple intersections. Conversely given any cover {Uα} and
collection of maps {φαβ} satisfying these compatibilities, we get a vector bundle in the natural way.

Another approach to vector bundles is through sheaves. In geometry, we often have assignments such as

{open sets U ⊂ S} → 𝒪(U) := {holomorphic functions on U}

where the right hand side is a vector space, and where restrictions give linear maps 𝒪(U) → 𝒪(V) whenever
V ⊂ U. This is the sheaf of holomorphic functions on S. Similarly we can define sheaves of continuous functions,
smooth functions, differential forms etc.

Definition 9.3. A presheaf of abelian groups F on S is an assignment of abelian groups U 7→ F(U) for ev-
ery open set U ⊂ S, with additive maps resV,U : F(U) → F(V) whenever V ⊂ U satisfying resU,U = id,
resW,V ◦ resV,U = resW,U whenever defined. We call s ∈ F(U) a section.

A presheaf is a sheaf if it satisfies two additional properties. Firstly, if we have a cover U =
⋃
Uα and s ∈ F(U)

is such that resUα,U(s) = 0 for all α, then s = 0. Secondly if we have a cover U =
⋃
Uα and sections sα ∈ F(Uα)

satisfying resUα∩Uβ,Uα
(sα) = resUα∩Uβ,Uβ

(sβ), then there is a section s ∈ F(U) satisfying resUα,U(s) = sα.

Example 9.4. A section of a vector bundle p : E→ S over U ⊂ S is a holomorphic map s : U→ E|U satisfying
p ◦ s = id. This gives a sheaf of sections of E, which we denote by 𝒪(E).

The sheaf of holomorphic functions, denoted 𝒪, is naturally the sheaf of sections of the trivial line bundle
C × S→ S.

Example 9.5. One can form the tangent bundle (written −K or TS) has fibers given by the holomorphic tangent
spaces. Likewise, the cotangent bundle K (or T∗S ) has fibers given by the cotangent spaces, and this is the bundle
dual to TS. Sections of TS and T∗S are holomorphic vector fields and 1-forms respectively.

§ 9.1 The Picard group. A line bundle L on S naturally has a dual Ľ . This is most easily defined from
the transition functions perspective, where the transition functions for Ľ are inverse pointwise to those of L.
Likewise we can take tensor products of line bundles by multiplying transition functions. Since 𝒪 has trivial
transition functions, isomorphism classes of line bundles on S form a group called the Picard group of S.

We want to relate line bundles to meromorphic functions. For p ∈ S, there is a line bundle L[p] whose sections
is given by meromorphic functions which have at worst a simple pole at p and are holomorphic elsewhere. In
terms of transition functions, we have a trivialising cover S = D ∪ (S \ {p}) where D is a disc around p. Then
our line bundle is determined by a holomorphic map D ∩ (S \ {p}) → C∗, i.e. a nowhere vanishing function on
D\{p}. We can simply choose a local coordinate z for this, and check that changing the choice gives isomorphic
bundles.

Definition 9.6. A divisor on a compact Riemann surface is a formal sum D =
∑n
j=1 ajpj for aj ∈ Z, pj ∈ S.

Corresponding to this we have the line bundle L[D] =
⊗n
j=1 L[pj]

⊗aj where a negative power corresponds to
taking duals first.

Divisors form an abelian group Div(S) with a group homomorphism deg : Div(S) → Z sending
∑
j ajpj 7→

∑
j aj.

Moreover, the set of divisors has a partial order such that D ⩾ E if all the coefficients of D − E are non-
negative.

If f is a meromorphic function with zeros of order aj at pj and poles of order bj at qj, we get a divisor
(f) =

∑
ajpj −

∑
bjqj. Divisors arising in this way are called principal, and the principal divisors form a

subgroup of Div(S). The quotient Cl(S) is called the divisor class group.

These structures satisfy the following additional properties.

1. Note that principal divisors have degree zero. Thus the degree map descends to give a group homomor-
phism Cl(S) → Z.

2. Two divisors D1, D2 define isomorphic line bundles if and only if D1 −D2 is principal.

3. The global holomorphic sections of L[D] correspond to meromorphic functions f satisfying (f) ⩽ D.
Thus for D =

∑
ajpj, the vector space H0(D) of meromorphic functions with at worst poles of order aj

at pj is the space of global sections of L[D]. We also write H0(L[D]) for H0(D).
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The first of these implies that we have a map Cl(S) → Pic(S). This is in fact an isomorphism, see [Don04].
Thus all line bundles arise from divisors, and we can talk of the degree of a line bundle.

We can now restate Riemann–Roch as

dimH0(L) − dimH0(K− L) = deg L− g+ 1

where K − L denotes T∗S ⊗ L∗. To get this form of Riemann–Roch, we have used the identification of global
sections with meromorphic functions and a similar result that sections of K − L[D] are holomorphic 1-forms
vanishing along D.

§ 9.2 Embeddings in projective space. Let L→ S be a line bundle on a compact Riemann surface.

Definition 9.7. A trivialisation of L over an open set U ⊂ S is a nowhere vanishing section of L on U.

Let s0, ..., sn be a basis of global sections of L, and suppose for all p ∈ S there is an sj with sj(p) 6= 0 (“L
is basepoint-free”). Let ξ be a trivialisation of L over U ⊂ S, so sj = fjξ for holomorphic functions fj on U.
Thus we have a map φL : U→ Pn, this is well-defined independent of trivialisation since another trivialisation
would rescale all fj(p) by the same amount. In particular these glue across open sets, and we have a map
φL : S→ Pn written φL(p) = [s0(p) : ... : sn(p)].

Definition 9.8. We say L is very ample if φL is a closed immersion.

Theorem 9.9. Every compact Riemann surface has a very ample line bundle. In particular, all compact Riemann
surfaces are projective algebraic varieties.

Sketch. The main idea is that once deg(D) ⩾ 2g then L[D] is basepoint free, and once deg(D) ⩾ 2g + 1 then
L[D] is very ample.

Take divisor D with degree ⩾ 2g + 1. Note degK = 2g − 2, since we showed that a holomorphic 1-form has
χ(S) = 2g− 2 zeros with multiplicity. Thus deg(K−D) ⩽ −1 and there are no global holomorphic sections of
K −D, giving us H0(K − L[D]) = 0. Thus by Riemann–Roch we have dimH0(L[D]) ⩾ g + 2. Similarly for any
point p ∈ S, we can show dimH0(L[D−p]) < dimH0(L[D]) i.e. not all sections of L[D] vanish at p. Thus L[D]

is basepoint-free.

The proof of very-ampleness is analogous. It is then a very general fact (Chow’s theorem) that all compact
complex submanifolds of Pn admit the structure of projective varieties. For Riemann surfaces, the proof goes
roughly as follows– if S ⊂ Pn is one dimensional then the homogeneous coordinates zi induce meromorphic
functions fj =

zj
z0

on S. These meromorphic functions realise S as a branched cover of P1, so that the field
of meromorphic functions on S is a finite field extension of the corresponding field on P1. In particular any
two meromorphic functions on S are related by a polynomial, so S is contained in the vanishing set of some
polynomials. A little topology shows S is genuinely the vanishing locus of these polynomials.

This marks the end of the course. With another lecture we would have looked at sheaf cohomology using Cech
covers and explained Riemann–Roch in these terms, writing χ(L) := dimH0(L) − dimH1(L) = deg L − g + 1.
This is proven through Serre duality, H0(K − L) ∼= H1(L). The motivation for cohomology is explained in
[Don04, chapter 12], and this clarifies many constructions in the course– in particular how to view higher
cohomology groups as obstructions.
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