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The classical Torelli theorem is a celebrated result that shows smooth complex curves are determined by their
Jacobians (i.e. the moduli of line bundles). One can ask if a similar statement holds for moduli spaces of rank 2
bundles, and a positive answer was provided by Mumford and Newstead, who showed that a smooth projective
curve can be recovered from any moduli space of rank n stable bundles (with degree coprime to n). Further,
one may ask about singular curves– this is a much harder question which was only recently answered by Kaur
et al. Underlying such results are powerful techniques from Hodge theory which reduce algebro-geometric
problems to linear algebra and the study of tori.

§ 0.1 About. This course on Hodge theory was a part of a Winter School for students and early career
researchers, organised by the UK Algebraic Geometry Network. The lectures were delivered in-person in the
University of Warwick, and were transcribed by Parth Shimpi. These notes have undergone several amendments
and are not a verbatim recall of the lectures, therefore discretion is advised when using this material. The notes
are available online at https://pas201.user.srcf.net/documents/2023-ukag-hodge-theory.pdf. All
errors and corrections should be communicated to by email to parth.shimpi@glasgow.ac.uk.

§ 0.2 Supplement on complex tori. The lectures assume some familiarity with Abelian varieties, in particular
the Appell-Humbert correspondence and the notion of theta divisors shows up. A short introduction to the
theory can be found at https://pas201.user.srcf.net/documents/2023-complex-tori.pdf.

§ 1 Hodge decomposition

We have developed various cohomology theories on complex varieties– most notably the de Rham cohomology
and sheaf cohomology. One can ask if, for a smooth variety X, there is a relation between the two?

§ 1.1 The Dolbeault cohomology groups. Recall that if F is a sheaf on a smooth n-dimensional complex
manifold X, then to compute the sheaf cohomology groups Hk(X, F) we need an acyclic resolution of F. This is
given by a complex of sheaves F• = (F0 → F1 → F2 → ...) such that for any i > 0, H>0(X, Fi) = 0 (i.e. the Fi are
acyclic) and there is an injective morphism F→ F0 such that the complex 0→ F→ F• is exact. The cohomology
groups Hk(X, F) are by definition the cohomologies of the complex 0→ F0(X) → F1(X) → F2(X) → ... obtained
by applying the global sections functor to F•.

Now the sheaf of holomorphic p-forms Ωp
X is the pth exterior power of the cotangent bundle. What is

Hq(X,Ωp
X)? We need an acyclic resolution as above. Choosing local complex coordinates z1, ..., zn on an

open set U, we can consider the spaces of smooth complex (p, q)-forms

Ap,q(U) =
{∑

fIJdzI ∧ dz̄J

∣∣∣ |I| = p, |J| = q}
which together give a sheaf Ap,q of smooth (p, q)-forms on X. Each Ap,q can be shown to be acyclic using
Čech covers and partitions of unity, and there is a natural injection Ωp ↪→ Ap,0. Moreover, sheaves Ap,q come
equipped with the differential ∂̄ : Ap,q → Ap,q+1 given locally by

∂̄
(∑

fIJdzI ∧ dz̄J

)
=

∑∑ ∂fIJ

∂z̄j
dz̄j ∧ dzI ∧ dz̄J,

and by the ∂̄–Poincaré lemma the complex of sheaves 0 → Ω
p
X → Ap,• is exact. Thus we can use this acyclic

resolution to compute the sheaf cohomology Hp,q(X) := Hq(X,Ωp
X).

If X is compact and connected, the famous Hodge theorem asserts that each class in Hp,q(X) can be represented
by a unique harmonic1 (p, q)-form, and the space Hp,q(X) (hence equal to the space of Harmonic (p, q)-forms)
is finite dimensional. The Hodge numbers are defined as the dimensions hp,q(X) = dimHp,q(X).

Exercise 1.1. Show that hp,q(X) = hn−p,n−q(X) for n = dimX. [Hint: Serre duality.]

1With respect to the Laplacian ∆ = ∂̄∂̄∗ − ∂̄∗∂̄.
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§ 1.2 The Hodge decomposition theorem. In general, the Dolbeault cohomology and the de Rham coho-
mology aren’t strongly related and the two associated Laplacians (∂̄∂̄∗ − ∂̄∗∂̄), (dd∗ − d∗d) are independent.
However, when X is a compact manifold with a Kähler metric (e.g. if X is projective), then the two associated
Laplace operators are equal up to scaling. Thus the de Rham cohomology Hk(X,C), equal to the space of
harmonic k-forms, decomposes into the Dolbeault cohomology groups Hp,q(X) and we obtain the following
result which gives a definitive relation between the de Rham cohomology and sheaf cohomology on X.

Theorem 1.2 (Hodge decomposition). Let X be a smooth n-dimensional compact complex manifold that admits a
Kähler metric. Then for k 6 n, we have a decomposition of cohomology groups Hk(X,C) =

⊕
p+q=k H

p,q(X) and
moreover, the decomposition obeys a Hodge symmetry Hp,q(X) = Hq,p(X).

By Hodge symmetry, we have hp,q = hq,p(X) and by the Hodge decomposition, we can compute the Betti
numbers as bk(X) =

∑
p+q=k h

p,q(X). This data of Hodge numbers is usually packaged in a Hodge diamond
of the form below.

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

hn,0
... h0,n

hn,n−1 hn−1,n

hn,n

Then Hodge symmetry says the diamond is symmetric about the vertical axis, while Serre duality says it is
symmetric about the midpoint. The Hodge decomposition theorem gives some observations– for instance if k
is odd then dimHk(X,C) is even. Secondly, dimH0(X,Ωp

X) = dimHp(X,𝒪X).

Example 1.3. If X is a smooth complex curve of genus g, then b1(X) = 2g and hence h1,0 = h0,1 = g.

Exercise 1.4. Compute the Hodge diamond of a K3 surface. [Hint: all K3 surfaces are diffeomorphic with trivial
b1 and Euler characteristic 24.]

Exercise 1.5. Are the Hodge numbers birationally invariant? [Hint: check for the blow-up of a surface.]

§ 1.3 Pure Hodge structures. As is often the case in mathematics, we are more interested in the phenomenon
of decomposition than the actual numbers. Hence we make the following abstraction.

Definition 1.6. A pure Z-Hodge structure of weight k is given by a finitely generated Abelian group VZ and a
decomposition VC := VZ ⊗ C =

⊕
p+q=k V

p,q such that Vp,q = Vq,p.

The data of a pure Z-Hodge structure of weight k on VZ is equivalent to the data of a filtration VC = F0 ⊃ ... ⊃ Fk
with VC = Fp ⊕ Fk−p+1 for all p. Indeed in this case we have Vp,q = Fp ∩ Fq and given the Vp,qs we can
recover the filtration as Fp =

⊕
p′⩾p V

p′,k−p′
.

Remark 1.7. Note that C-vector spaces do not have an intrinsic notion of complex conjugation. However, for a
chosen basis this makes sense, and VC has a canonical choice of basis coming from VZ.

Definition 1.8. Let (VZ, V
p,q) and (WZ,W

p,q) denote two pure Z-Hodge structures of weights k, k + 2r

respectively. A bidegree (r, r) morphism of Hodge structures is given by a linear map φ : VZ → WZ such that
φ(Vp,q) ⊂Wp+r,q+r (or equivalently, φ(FpVC) ⊂ Fp+rWC).

Example 1.9. Let f : X → Y be a morphism between smooth projective complex varieties of dimensions
n,n + r respectively. By the Hodge decomposition theorem, the integral cohomology groups Hk(X,Z) have a
pure Hodge structure of weight k. Then the map f∗ : Hk(Y,Z) → Hk(X,Z) is a bidegree (0, 0) morphism of
Hodge structures. On the other hand, the Gysin morphism f∗ : Hk(X,Z) → Hk+2r(Y,Z) (i.e. the pushforward
f∗ : H2n−k(X,Z) → H2n−k(Y,Z) composed with Poincaré duality) is a morphism of bidegree (r, r).

§ 1.4 Intermediate Jacobians. Given a Hodge structure, one can sometimes naturally construct a complex
torus out of it. To see this, fix a lattice VZ of rank 2r, and a pure Z-Hodge structure Vp,q of weight 2k − 1

on it. Then VC/F
k = Fk = V0,2k−1 ⊕ ... ⊕ Vk−1,k is an r-dimensional C-vector space, and VZ forms a lattice

inside it via the natural inclusion VZ ↪→ VC � Fk. (Indeed, the only thing to check is that VZ ∩ Fk = 0, but this
is true since VZ is invariant under conjugation.) Thus VC/(F

k ⊕ VZ) is an r-dimensional complex torus, called
the intermediate Jacobian associated to the Hodge structure. The period of this torus is VZ.
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Definition 1.10. Given a pure Hodge structure (VZ, V
p,q) of weight k, a polarisation is a non-degenerate

bilinear form Q : VZ × VZ → Z satisfying the Hodge–Riemann relations

(i) Q(v,w) = (−1)kQ(w, v) for all v,w ∈ VZ,

(ii) Q(v,w) = 0 for all v ∈ Vp,q, w ∈ Vp′,q′
whenever p 6= q ′, and

(iii) (−1)
k(k−1)

2 ip−qQ(v, v̄) > 0 for v ∈ Vp,q \ 0.

One checks that this definition is such that whenever the Hodge structure has odd weight (consequently VZ has
even rank), the polarisation of the Hodge structure is also a polarisation on the intermediate Jacobian (i.e. a
positive definite Hermitian form H : Fk×Fk → C that is integral on VZ and satisfies the Riemann period relation
ImH(iv, iw) = ImH(v,w).) Thus intermediate Jacobians of polarised Hodge structures (whenever defined) are
polarised Abelian varieties.

Example 1.11. If X is an n-dimensional Kähler manifold with fixed Kähler class ω ∈ H1,1(X), then the inter-
section form on Hk(X,Z) given by (α,β) 7→

∫
[X]ω

n−k∧α∧β is a polarisation. For k > 0, the kth intermediate
Jacobian of X is thus an Abelian variety given by

IJack X :=
H2k−1(X,C)

FkH2k−1(X,C)⊕H2k−1(X,Z)
.

The first intermediate Jacobian is simply called the Jacobian of X, given by JacX := H1(X,𝒪X)/H1(X,Z).

Intermediate Jacobians are Hodge–theoretic invariants of a smooth variety that often determine its geometry.
For example, [Clemens–Griffiths] show that if X is a smooth projective 3-fold with H0,3(X) = 0 (e.g. if X is
Fano) then X is rational only if IJac2 X decomposes into a product IJac1 C1 × ...× IJac1 Cn for smooth curves
C1, ..., Cn. On the other hand, they also compute that if X arises as a cubic hypersurface in P4 then IJac2 X is
five dimensional and principally polarised. In particular there is a well-defined theta divisor up to translation,
which has a single isolated singularity. Since the theta divisor for products of the form IJac1 C1× ...× IJac1 Cn

cannot have isolated singularities, this shows that a general cubic 3-fold is irrational.

§ 2 Torelli and Mumford–Newstead theorems

When is a complex manifold determined by its Hodge theory?

Exercise 2.1. Exhibit two non-isomorphic projective varieties with isomorphic Hodge structures.

Hence just looking at the Hodge structure does not suffice. However, it was shown by Torelli that for a smooth
curve X it is sufficient to check the polarised Hodge structure on H1(X,Z). Recall if X has genus g, then
H1(X,Z) has a pure Hodge structure of weight 1. The cup product on cohomology Q(α,β) =

∫
[X] α∧β gives a

polarisation, which can be explicitly described by choosing a basis α1, ..., αg, β1, ..., βg for the lattice H1(X,Z).
We then have Q(αi, αj) = Q(βi, βj) = 0 for all i, j and Q(αi, βj) = δij. In other words, Q is given by the
2g× 2g matrix

[
0 Id

−Id 0

]
.

It follows that the Jacobian Jac(X) is principally polarised, with a well-defined theta divisor.

Theorem 2.2 (Torelli). Two smooth curves X, Y are isomorphic if and only if there is an isometry of polarised
Hodge structures H1(X,Z) → H2(Y,Z). Equivalently, if there is an isomorphism JacX ∼= JacY that restricts to an
isomorphism of theta divisors.

§ 2.1 Jacobians as moduli spaces. Let X be a smooth projective variety. There is an associated algebro-
geometric construction called the Picard variety Pic0(X), which is a moduli space of line bundles on X with
trivial Chern class. This is constructed as follows– write 𝒪×

X for the sheaf of nowhere–vanishing holomorphic
functions on X, and recall that PicX = H1(X,𝒪×

X) is the group of line bundles on X up to isomorphism.

Considering the exponential exact sequence 0 → Z
2πi−−−→ 𝒪X

exp−−−→ 𝒪×
X → 0, the associated long exact sequence

is given by

→ H0(X,𝒪X)
exp−−−→ H0(X,𝒪×

X) → H1(X,Z)
j−→ H1(X,𝒪X) → H1(X,𝒪×

X)︸ ︷︷ ︸
PicX

c1−−→ H2(X,Z) → H2(X,𝒪X) →

and the first Chern map c1 is by definition the coboundary map shown. By definition, Pic0(X) = ker c1.

Now X is compact so exp : C → C× is surjective, and hence j is injective, in fact it is the natural map
H1(X,Z) ↪→ H1(X,C) � H1,0(X). Chasing through the exact sequence, we have Pic0(X) = H1(X,𝒪X)/H1(X,Z)
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which we recognise as the Jacobian JacX. Hence line bundles on a smooth projective varieties are determined
by their Chern class and an element of the Jacobian JacX.

Exercise 2.3. Show that simply connected projective varieties have trivial Jacobians.

If X is a connected curve, then H2(X,𝒪X) = 0 and hence c1 is surjective (given by the degree map). Thus Pic0X
parametrises line bundles of degree zero, and is called the Jacobian. This is a classical construction going back
to Riemann.

Remark 2.4. Here is how Riemann (allegedly) showed JacX is the parameter space of degree zero line bundles.
For curves there is an identification H0,1(X) ∼= Hom(H1,0(X),C), and Riemann computed the map j by taking
a cycle [Z] ∈ H1(X,Z), and mapping it to the functional ω 7→

∫
Z
ω on the space of holomorphic 1-forms

H1,0(X). This is called the period map, since it identifies H1(X,Z) with the period lattice of the Jacobian.

Continuing this analytic picture, fix a base point p0 ∈ X and choose paths connecting it to every other point
in X. Integration along these chosen paths gives a morphism X→ H0,1(X) by mapping p ∈ X to the functional
ω 7→

∫p
p0
ω. The induced map X → JacX is independent of the choice of paths, and extends linearly to

a well-defined map from degree zero divisors on X called the Abel–Jacobi morphism. Riemann showed that
the kernel of this map Div0(X) → JacX is precisely the group of principal divisors, giving an isomorphism
Pic0(X) ∼= JacX.

More generally, we use the term Abel–Jacobi map to refer to any map induced from the map X → Pic0(X)
sending p ∈ X to the line bundle 𝒪(p − p0) for a fixed base point p0 ∈ X. In particular, we talk of the dth
Abel Jacobi map X(d) → Pic0 X which sends a tuple (p1, ..., pd) in the symmetric power X(d) to the line bundle
𝒪(p1 + ...+ pd − d · p0).

§ 2.2 Theta divisors of Jacobians. Recall that if X is a smooth curve then the intersection pairing on H1(X,Z)
has determinant 1, and hence the polarisation on JacX is principal. This gives an ample line bundle with a
unique global section (up to scaling), and the associated divisor of zeros of this bundle is called the theta
divisor. This is well understood.

Theorem 2.5. Let X be a smooth projective curve of genus g > 1 and choose a base point p0 ∈ X. Then the Abel–Jacobi
map X(g−1) → Pic0 X is birational and surjective onto the theta divisor.

Thus identifying Pic0(X) with the space Picd(X) of degree d line bundles, we see that the theta divisor is pre-
cisely the locus where H0(X,−) does not vanish. It can be shown that this has singular locus of dimension g−3
when X is hyperelliptic, and g− 4 otherwise. In particular, products of Jacobians of curves never have isolated
singularities– this is an essential step in Clemens–Griffiths’ proof of the irrationality of cubic 3-folds.

§ 2.3 The Mumford–Newstead theorem. The construction of the Jacobian and the Torelli theorem predate
Hodge theory. However, these tools become indispensable when generalising the results– for instance, one can
ask if the curve also determined by the moduli space ℳ2,dX of stable vector bundles of rank r = 2 and odd
degree d (this condition ensures semistable bundles are stable and the moduli space is smooth). A positive
answer is provided by [Mumford–Newstead], who show that X can be recovered from the second intermediate
Jacobian IJac2(ℳ2,dX).

We briefly discuss the construction. The moduli space ℳ2,d(X) is a smooth projective complex variety of
dimension 3g− 3 (in general, the dimension is (r2 − 1)(g− 1)). The moduli space is also unirational, i.e. there
is a dominant morphism P3g−3 99K ℳ2,d(X). In particular there are no global regular p-forms for p > 1, and
we have hp,0 = h0,p = 0. It follows that the second intermediate Jacobian is simply

IJac2(ℳ2,dX) =
H1,2(ℳ2,dX)

H3(ℳ2,dX,Z)
.

Mumford and Newstead compute the cohomology group H3(ℳ2,dX,Q) as having 2g + 2 generators. Of these,
two come from the universal family on the moduli space and the remaining 2g form a group isomorphic to
H1(X,Z). We have the following.

Theorem 2.6 (Mumford–Newstead). There is a Hodge isometry ψ : H1(X,Z) → H3(ℳ2,dX,Z) that induces an
isomorphism JacX ∼= IJac2(ℳ2,dX) preserving theta divisors. In particular, a smooth projective curve is uniquely
determined by the moduli space of rank 2 bundles of a fixed odd–degree determinant.

More generally, a similar result holds for the moduli spaces of stable vector bundles with fixed co-prime rank
and degree.
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§ 3 Nodal curves and mixed Hodge structures

What happens if X is an irreducible nodal curve with one node? Using classical techniques (i.e. without invoking
Hodge theory), the following analogue of the Torelli theorem can be shown.

Theorem 3.1 (Namikawa). If X,X ′ are two irreducible nodal curves such that their normalisations are not hyper-
elliptic and have genus g > 4, then X ∼= X ′ if and only if JacX ∼= JacX ′.

To obtain a version of the Mumford–Newstead theorem, we need some form of Hodge theory on singular
varieties. But for an irreducible nodal curve of genus g, we see that the rank of H1(X,Z) = Z2g+1 is odd and
hence there are no pure Hodge structures. To remedy this, we make the following definition.

Definition 3.2. A mixed Z-Hodge structure is given by a finite rank Z-module VZ, equipped with an increasing
weight filtration 0 = W0 ⊂ W1 ⊂ ... ⊂ Wn = VQ and a decreasing Hodge filtration VC = F0 ⊃ F1 ⊃ F2 ⊃ ...

such that the induced filtration on each graded piece GrkW• =Wk/Wk−1 is a pure Z-Hodge structure.

Example 3.3. A mixed Hodge structure with trivial weight filtration is precisely a pure Hodge structure.

Example 3.4 (Normalisation of a nodal curve). Let X be an irreducible curve with a node at p ∈ X, and
π : X̃ → X be its normalisation i.e. X̃ is a smooth genus g curve and π identifies the two points q0, q1 ∈ X̃
in the exceptional fiber and is an isomorphism elsewhere. It follows that there is a short exact sequence
of singular cochain-complexes 0 → C•(X,Q) → C•(X̃,Q) → C•({p},Q) → 0, and an associated long ex-
act sequence which computes H1(X,Q) = H1(X̃,Q) ⊕ H0({p},Q). The weight filtration is then given by
W• = (0 ⊂ H0({p},Q) ⊂ H1(X,Q)). Note that W0 = Q is precisely kerπ∗.

To get the Hodge filtration, we likewise use the exact sequence 0 → 𝒪X → π∗𝒪X̃ → 𝒪p → 0. Taking the long
exact sequence and noting that π∗ commutes with cohomology (since π is finite), we see that H0(X,𝒪X) = C
and H1(X,𝒪X) = H1(X̃,𝒪X̃)⊕H0(X,𝒪p). Then the Hodge filtration is F• = (0 ⊂ H0(X,𝒪p) ⊂ H1(X,𝒪X)). The
induced Hodge filtrations on the weight-graded pieces are the usual ones on H0({p},Q) and H1(X̃,Q).

It can be shown that every singular complex projective variety X admits a mixed Hodge structure, although we
do not prove it. We can then use this Hodge structure to define the generalised intermediate Jacobians

IJack X =
H2k+1(X,C)

FkH2k−1(X,C) +Hk(X,Z)
,

for k > 1. As before we say IJac1 = Jac is the (generalised) Jacobian.

Note the subgroup by which we quotient is no longer a direct sum! Consequently, the intermediate Jacobian is
not always an Abelian variety. It is, however, always an extension of an Abelian variety by an algebraic torus
(C×)b. Such objects are called semi-Abelian varieties.

For instance X is an irreducible curve with one node and X̃ is its normalisation, our computation shows there
is an exact sequence

0→ C∗ → JacX→ JacX̃→ 0.

Given such a curve X we can consider a smoothing (i.e. a family of curves with unique non-singular fiber X)
and chase through a diagram to show a Mumford–Newstead type result, that JacX coincides with the second
intermediate Jacobian of a moduli space of rank 2 bundles with fixed determinant. Combined with Namikawa’s
result, we then have the following.

Theorem 3.5 (Basu–Dan–Kaur). Let X0, X1 be irreducible nodal curves of genus g > 4 with exactly one node, such
that the normalizations X̃0 and X̃1 are not hyper-elliptic. Let L0 and L1 be invertible sheaves of odd degree on X0 and
X1, respectively. Then X0

∼= X2 if and only if ℳ2,L0
X0

∼= ℳ2,L1
X1, where ℳ2,L0

(X0) denotes the Gieseker moduli
space of rank 2 vector bundles with determinant L0 on curves semi-stably equivalent to X0.
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