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HyperKähler and K3 manifolds, being interesting objects to study in their own right, also provide an excellent
playground to study ideas in Hodge theory and deformation/moduli theory. In these introductory lectures we
explore some of the classical theory surrounding the differential and algebraic geometry of these objects.

§ 0.1 About. This course on hyperKähler geometry was a part of a Winter School for students and early career
researchers, organised by the UK Algebraic Geometry Network. The lectures were delivered in-person in the
University of Warwick, and were transcribed by Parth Shimpi. These notes have undergone several amendments
and are not a verbatim recall of the lectures, therefore discretion is advised when using this material. The notes
are available online at https://pas201.user.srcf.net/documents/2023-ukag-hyperkahler.pdf. All
errors and corrections should be communicated to by email to parth.shimpi@glasgow.ac.uk.

§ 1 Basics on K3 surfaces and hyperKähler manifolds

Definition 1.1. A compact complex surface X is a K3 if H1(X,𝒪X) = 0 and Ω2
X

∼= 𝒪X.

Example 1.2. There are many examples of K3 surfaces, with explicit equations. For example, smooth quartic
hypersurface X ⊂ P3 is K3. Indeed, we have an exact sequence

0 → 𝒪P3(−3) → 𝒪P3 → 𝒪X → 0

so taking the long exact sequence of cohomology, we find H1(X,𝒪X) = 0. Secondly, by adjunction we see that
KX = (KP3 + X)|X = (−4H + 4H)|X = 0 so the canonical bundle of X is trivial. A similar argument shows that
a smooth surface defined by a quadric and a cubic equation in P4 is K3. Likewise for three quadrics in P5.

Generalising the example of a quartic, if Y is Fano, then a smooth surface X = D1 ∩ ... ∩ Dn defined as an
intersection of divisors is K3 if

∑
Di + KY = 0. Thus K3 surfaces often arise from fundamental linear systems

of Fano 3-folds. As another example, if V(f6) ⊂ P2 is a smooth sextic, then X = V(y2 − f6) ⊂ P(1, 1, 1, 3) is a
K3 surface in the anticanonical linear system of the weighted projective space.

Example 1.3. Another way to obtain K3 surfaces is as quotients of Abelian varieties. Consider a complex
2-dimensional torus A, and the map (−1) : A → A which sends an element to its inverse under the group law.
The quotient A/{±1} is singular at precisely the image of the 2-torsion subgroup A[2] ⊂ A which consists of
sixteen points. Blowing up at these, we get a K3 surface called the Kummer surface.

The differential geometry of K3 surfaces is well understood– in particular they are all diffeomorphic as smooth
R-manifolds. Thus there is a unique lattice (i.e. a free abelian group equipped with a symmetric bilinear form)
corresponding to the second integral cohomology of a K3 surface equipped with the intersection pairing, called
the K3 lattice. Before stating its form, we recall some notation from lattice theory– we write U ∼= (Z2,

(
0 1
1 0

)
)

for the hyperbolic lattice. The E8 lattice is characterised by its property of being the unique eight-dimensional
lattice that is unimodular (i.e. has intersection matrix of determinant ±1.) Another lattice that will appear
later is I1, the positive-definite one-dimensional unimodular lattice. The direct sum of two lattices is always
orthogonal, and if Λ = (Z⊕n,M) is a lattice and m is an integer, then we define the twisted lattice Λ(m) as
Z⊕n equipped with the pairing mM.

Proposition 1.4. If X is a K3 surface, then the singular cohomology H2(X,Z) equipped with the intersection pairing
is isomorphic to the 22-dimensional lattice ΛK3 = U⊕3 ⊕ E⊕2

8 (−1). This has signature (3, 19).

The Torelli theorem for K3 surfaces asserts that the complex structure is determined by how this sits inside
the complex cohomology. This will help study deformations and moduli of K3 surfaces later.

§ 1.1 HyperKähler manifolds. K3 surfaces form the two-dimensional counterpart of a larger family of mani-
folds with trivial canonical bundles and symplectic structures, called hyperKähler manifolds.
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Definition 1.5. A complex manifold (M, I) is Kähler if there exists a metric g compatible with the complex
structure I such that the (1, 1)-form ω = g(I ·−,−) is closed. A compact Kähler manifold X is hyperKähler if it
is simply connected (i.e. π1(X) = 0) and the group H0(X,Ω2

X) is generated by a holomorphic symplectic form.

Example 1.6. Pn
C is a Kähler manifold, with Kähler form given by the Fubini-Study metric ω = i

2
∂∂̄ log |z|2.

Thus every projective manifold is also Kähler, and not much is lost by thinking of the Kähler condition as a
mild generalisation of the projective condition.

Observe that the existence of a symplectic form σ : TX ⊗ TX → 𝒪X on a hyperKähler manifold X implies the
dimension of X is even. Moreover, can use σ to identify TX with Hom(TX,𝒪X) = Ω1

X. Thus σ∧n : 𝒪X → Ωn
X

gives a trivialisation of the canonical bundle.

Indeed, two dimensional hyperKähler manifolds are precisely K3 surfaces– by a result of Siu, all K3 surfaces
(even the non-algebraic ones) are Kähler. Since all K3 surfaces are diffeomorphic, it suffices to show any one of
them is simply connected and one does this for a smooth quadric in P3 using the hard Lefshetz theorem. Then
the K3 condition implies any holomorphic global function gives a holomorphic symplectic form generating
H0(X,Ω2

X).

In higher dimensions, there aren’t many known examples for hyperKähler manifolds and the ones we know
arise from K3s.

Example 1.7 (Hilbert schemes of K3 surfaces). Let S be a K3 surface and consider the product Sn = S× ...×S.
The symmetric group Σn acts on this, and the quotient S(n) = Sn/Σn is a variety singular along the image of
the big diagonal ∆ = {(x1, ..., xn) ∈ Sn | xi = xj for some i 6= j}. Beauville proved that there exists a crepant
resolution S[n] → S(n) (called the Hilbert–Chow morphism), and the variety S[n] (called the Hilbert scheme, also
written Hilbn(S)) parametrises zero-dimensional subschemes of length n in S.

This is concretely realised in the special case n = 2, where we see that the Hilbert–Chow morphism S[2] → S2/Σ2

sends a length 2 subscheme to its support Z 7→
∑

P∈SuppZ length𝒪Z,PP and is the blow-up of the singular locus
∆ ⊂ S2/Σ2. The exceptional locus E ∼= PS(TS) is precisely the preimage of points of form 2P.

More importantly for us, S[n] is hyperKähler. Indeed it is easy to show the existence of a holomorphic sym-
plectic form– since S is K3, there is a non-trivial element σ ∈ H0(S,Ω2

S) and we will use this to construct one
on the Hilbert scheme. If πi : S

n → S denotes the ith projection, then π∗
iσ is symplectic on Sn and

∑
i π

∗
iσ is

invariant under the Σn action. Thus it descends to a symplectic form on S(n), and can be pulled back via the
crepant resolution.

Example 1.8 (Generalised Kummer manifolds). If A is a 2-dimensional complex torus, there is a natural map
Σ : A(n) → A which applies the group law to a tuple (a1, ..., an) ∈ An. Then considering the composite map
f : A[n] → A(n) → A, the preimage Kumn−1(A) := f−1(0) is a 2(n − 1) dimensional Kähler manifold called
the generalised Kummer manifold.

More examples were provided by O’Grady, who constructed a 6-fold and a 10-fold as the resolutions of moduli
spaces of sheaves on K3 surfaces and abelian surfaces.

§ 1.2 Other properties and names. HyperKähler surfaces are so called because they are very Kähler– we can
use the Kähler structure (M, I, g) to find two more complex structures J, K such that g is a Kähler metric for
all complex structures aI+ bJ+ cK parametrised over the unit sphere (a, b, c) ∈ S2 ⊂ R3.

HyperKähler manifolds are also called irreducible holomorphically symplectic manifolds (IHSMs), because of the
result below.

Theorem 1.9 (Beauville–Bogomolov). Let X be a compact Kähler manifold such that c1(X) = 0. Then there exists
a finite étale morphism X̃ → X such that X̃ = T ×

∏
j Yj ×

∏
j Zj, where the factor T is a complex torus, the Yj are

strict Calabi–Yau (i.e. KYj
= 0 and H0(Yj,Ω

p
Yj
) = 0 for all 0 < p < dim Yj) and the Zj are hyperKähler.

§ 2 Deformations of hyperKähler manifolds

Because the differential geometry of hyperKähler manifolds is so rigid, the only thing that can change in a
family is the complex structure, which is largely controlled by the Hodge theory of these manifolds. Being
an algebraic construction, this makes hyperKähler manifolds particularly suited for studying deformation and
moduli problems.
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§ 2.1 Recap: Hodge theory. Recall that a (pure) Hodge structure of weight k on a finitely generated Abelian
group H is a decomposition H ⊗ C =

⊕
p+q=k H

p,q such that Hp,q = Hp,q where H ⊗ C has a canonical
conjugation map given by h⊗ λ 7→ h⊗ λ̄.

If X is a complex manifold then we have Hk(X,C) = Hk(X,Z) ⊗ C, and the Hodge decomposition theorem
states that Hk(X,Z) has a pure Hodge structure of weight k whenever X is a compact Kähler manifold. The
decomposition factors are given by Hp,q(X) = Hq(Ωp

X), and the Hodge decomposition respects the ring
structure on cohomology in that Hp,q(X) ^ Hr,s(X) ⊂ Hp+r,q+s(X).

Note also that the subspace Hp,q(X)⊕Hq,p(X) is stable under complex conjugation, so considering Hn(X,R)
as a subspace of Hn(X,C) we see that there is an induced decomposition Hn(X,R) =

⊕
p+q=n
p<q

Hp,q(X,R)

where we write Hp,q(X,R) = Hn(X,R) ∩ (Hp,q(X)⊕Hq,p(X)).

§ 2.2 The cohomology of hyperKähler manifolds. We saw that the singular cohomology of a K3 surface is
given by the K3 lattice, we will derive a similar structure if X is hyperKähler of dimension 2n. In this situation,
we have a symplectic form σ generating H0(X,Ω2

X), normalised so that
∫
X
(σσ̄)n = 1. This allows us to define

a quadratic form on H2(X,Z) as

qX(α) =
n

2

∫
X

α2(σσ̄)n−1 + (1− n)

(∫
X

ασnσ̄n−1

)(∫
X

ασn−1σ̄n

)
.

Note if n = 1 (i.e. X is a K3 surface) then qX = 1
2

∫
X
α2 is proportional to the intersection form. This is true

more generally, in the sense below.

Theorem 2.1. If X is a hyperKähler manifold of dimension 2n, then there exists a C ∈ R such that ∀α ∈ H2(X,Z)
we have qX(α)

n = C
∫
X
α2n. In particular, qX can be rescaled to obtain an integral and primitive non-degenerate

form H2(X,Z) → Z called the Beauville–Fujiki form which has signature (3, b2(X) − 3).

We will sketch explicit subspaces on which the form is positive and negative definite. Since H2,0(X) is spanned
by a holomorphic symplectic form σ, any α ∈ H2(X,C) is of the form α = λσ + β + µσ̄ for β ∈ H1,1(X)

and we then have qX(α) = λµ + n
2

∫
X
β2(σσ̄)n−1. In particular H1,1(X) is orthogonal to H2,0(X) ⊕ H0,2(X)

and qX is positive definite on all forms α = λσ + λσ. The formula also shows that qX is positive defi-
nite on any Kähler class [ω] ∈ H1,1(X,R), so qX is positive definite on the three dimensional subspace
H0,2(X,R)⊕ R[ω] ⊂ H2(X,R).

To understand the orthogonal subspace on which the form is negative definite, recall that (the cohomology class
of) a k-form α is primitive if ωn−k+1 · α = 0. It follows that a 2-form α is primive if and only if qX(α,ω) = 0,
and hence qX is negative definite precisely on the space H1,1(X,R)prim of primitive real (1,1)-forms.

Example 2.2. If X = S[n] for S a K3 surface, then H2(X,Z) ∼= U⊕3 ⊕ E8(−1)⊕2 ⊕ I1(2− 2n) where the lattice
I1(2 − 2n) is generated by 1

2
[E] for E the exceptional divisor of the Hilbert–Chow morphism S[n] → S(n). On

the other hand if X = Kumn(A) for a 2-dimensional complex torus A, we have H2(X,Z) = U⊕3 ⊕ I1(−2− 2n).

Remark 2.3. For every known example, the form qX : H2(X,Z) → Z is even (i.e. has image in 2Z) but the proof
for general hyperKähler manifolds remains open.

§ 2.3 Deformation families. We can now discuss the main content of this section, the study of hyperKähler
manifolds in families.

Definition 2.4. A deformation of a manifold X is a smooth proper morphism of complex spaces X → S, where
s ∈ S is a distinguished point and X|s ∼= X. The deformation is said to be infinitesimal if S = SpecC[ϵ]/(ϵ2).

A deformation X → S is said to be universal if for any other deformation X ′ → S ′ 3 s ′, there is a unique map
(S ′, s ′) → (S, s) such that X ′ ∼= X ×S S ′.

Remark 2.5. Note we are working with smooth (not just flat) deformations, and this allows a lot of differential
geometric tools to come into play. In particular by Ehresmann’s theorem, whenever X → S is a deformation
of X, we have an open cover S =

∪
α Uα such that X|Uα

is diffeomorphic to X × Uα. Thus only the complex
structure is deformed.

Theorem 2.6. The set of infinitesimal deformations of X up to equivalence is in bijection with the space H1(X, TX).

Sketch. Let X → SpecC[ϵ]/(ϵ2) be an infinitesimal deformation. By Ehressmann’s theorem the normal bundle
of the central fiber X is trivial, hence the normal sequence

0 → TX → TX |X → 𝒪X → 0

3



gives an element in Ext1(𝒪X, TX) = H1(X, TX). The inverse map sends an element v ∈ H1(X, TX) represented
by a 1-cocycle {vij ∈ H0(Ui ∩ Uj, TX)} to the family X → SpecC[ϵ]/(ϵ2) constructed by gluing the trivial
deformations Ui × SpecC[ϵ]/(ϵ2) along the maps (id+ ϵvij) : 𝒪Ui∩Uj

[ϵ] → 𝒪Ui∩Uj
[ϵ].

Thus the set of infinitesimal deformations is naturally a vector space. It is in fact the tangent space to the base
of the universal deformation X → DefX 3 0, if it exists. Indeed in this case infinitesimal deformations are
given by pointed morphisms SpecC[ϵ]/(ϵ2) → DefX, and the space of such maps Mor∗(SpecC[ϵ]/(ϵ2),DefX)

is the the tangent space T0 DefX.

We will now see that hyperKähler manifolds always have universal deformations and locally they are simply
Cn.

Theorem 2.7. For any complex manifold X, if H0(X, TX) = 0 then a universal deformation X → DefX exists.
Moreover for all t ∈ DefX, this is a universal deformation of Xt = X|t.

Corollary 2.8. HyperKähler manifolds have universal deformations.

Proof. If X is a hyperKähler manifold, then the symplectic form σ : TX × TX → 𝒪X induces an isomorphism
TX ∼= ΩX and hence H0(X, TX) = H0(X,ΩX). By Hodge symmetry this has the same dimension as H1(X,𝒪X),
but this space vanishes for hyperKähler manifolds.

Theorem 2.9 (Bogomolov–Tian–Todorov). If X is hyperKähler, then the universal deformation space DefX is
smooth (and hence equal to H1(X, TX)).

Example 2.10. If S is a K3 surface, then note that h1(S, TS) = h1,1(S) = 20. Can all deformations arise
as smooth quartics? Note a quartic equation has h0(P3,𝒪P3(4)) = 35 parameters. On the other hand the
automorphism group PGL(4,C) is 15 dimensional, so the space of quartics in P3 has dimension 35−1−15 = 19.
Thus we conclude that S must admit deformation which does not embed in P3.

§ 3 Moduli of hyperKähler manifolds

We have seen that if X is a hyperKähler manifold then it has a universal deformation over DefX = H1(X, TX)

centered at the origin. Moreover DefX has an open subset UX such that the family restricted to UX is a
universal deformation of every fiber X|t (t ∈ UX). Thus we can naïvely consider the set

ℳX = {Y | Y is hyperKähler and deformation equivalent to X}

and use the charts from each UY ⊂ DefY ∼= Cb2−2 to give this a complex structure, since if Z ∈ UY then there
is an open subset of UZ identified with a neighbourhood of Z in UY by the universality. The same argument
also guarantees compatibility at Z ∈ UY ∩UY ′ , since the corresponding restricted universal families Y|UY∩UY ′

and Y ′|UY∩UY ′ are both also universal deformations of Z. Thus the set of all hyperKähler manifolds ℳX has
the structure of a complex space, but it turns out this is not Hausdorff and hence isn’t a manifold.

To get a well behaved moduli space, we hence parametrise hyperKähler manifolds with extra data, namely
the choice of an isomorphism H2(X,Z) ∼= ΛK3 and (later) the choice of an ample bundle. For the rest of the
section we will build these ideas for the specific case of a K3 surface, but everything generalises to hyperKähler
manifolds but with more bookkeeping.

§ 3.1 Moduli of marked K3 surfaces. As mentioned before, K3 surfaces have a Torelli theorem which reduces
the problem to algebraic data.

Theorem 3.1 (Torelli theorem for K3 surfaces). Two K3 surfaces X,X ′ are isomorphic if and only if there is a Hodge
isometry H2(X,Z) ∼= H2(X ′,Z). Moreover, such an isometry γ is of the form γ = f∗ for f : X → X ′ if and only if
there is a Kähler class ωX ∈ H2(X,R) such that γ(ωx) ∈ H2(X ′,R) is Kähler.

Definition 3.2. A marked K3 surface is a pair (X,φ), where X is a K3 surface and φ : H2(X,Z) → ΛK3 is an
isometry. An isomorphism (X,φ) → (X ′, φ ′) is an isomorphism f : X → X ′ such that φ ◦ f∗ = φ ′.

By the Torelli theorem, parametrising marked K3 surfaces is equivalent to parametrising Hodge structures on
ΛK3. Such a structure is given by a filtration 0 ⊂ F0 ⊂ F1 ⊂ ΛK3 ⊗ C where dim F0 = 1, dim F1 = 21. Thus
to first approximation the parameter space is in the variety Flag(1, 21,ΛK3). But this space has dimension
21× 20 = 420, which is much larger than the expected dimension of DefX!

Indeed not all filtrations can arise– the Hodge structure in this situation is completely determined by H2,0(X),

since H0,2(X) = H2,0(X) and H1,1 = (H2,0(X) ⊕ H0,2(X))⊥. Moreover if σ is a generator of H0(X,Ω2
X), then
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it satisfies the Hodge–Riemann bilinear relations (σ, σ̄) > 0, (σ, σ) = 0. Thus our desired parameter space is a
subset of the Grassmannian Gr(1, 22) = P(ΛK3 ⊗ C) given by

ΩK3 = {[x] ∈ P(ΛK3 ⊗ C) | (x, x) = 0 and (x, x̄) > 0},

called the period domain. This is a 20-dimensional complex manifold, given by a Euclidean open set in the
subvariety defined by a quadratic form in P21.

Write ℳK3 for the set of marked K3 surfaces up to isomorphism. By construction, sending a marked K3 surface
(X,φ) to the point [φ(H2,0X)] ∈ P(ΛK3 ⊗ C) gives a (surjective!) map ℳK3 → ΩK3, called the period map. In
fact we can give ℳK3 an analytic structure by considering families of marked K3 surfaces.

Definition 3.3. A family of marked K3 surfaces is given by a smooth map π : X → S and an isometry of sheaves
Φ : R2π∗Z →∼ ΛK3.

The period map associated to a family (X → S,Φ) is given by the map P : S → ΩΛK3 , which sends s ∈ S to the
“period of X|s”, i.e. the subspace [Φs(H2,0(X|s))].

Thus the period map for families gives charts on ℳK3, and the global period map ℳK3 → ΩK3 is holomorphic.
It not injective– if (X,φ) and (X ′, φ ′) have the same periods, then theree is an isomorphism f : X → X ′ by the
Torelli theorem but φ may differ from f∗ ◦ φ ′ by an automorphism of the lattice (in particular it is possible
that such an automorphism that does not preserve the Kähler cone and hence the isometry isn’t realised
as a pullback). Thus it makes sense to quotient by the action of the orthogonal group O(ΛK3) to obtain a
map

ℳK3/O(ΛK3) −→ ΩK3/O(ΛK3).

By the Torelli theorem this map is an isomorphism of complex spaces, and the points of this orbit space are
isomorphism classes of K3 surfaces.

The connected components of ℳK3/O(ΛK3) are the moduli spaces of K3 surfaces that belong to a particular
deformation family, this is precisely the construction that came from considering universal deformations at the
start of this section. In this context, the non–Hausdorff behaviour can be seen as coming from the fact that the
action of O(ΛK3) is far from being properly discontinuous.

§ 3.2 Algebraicity of K3 surfaces. The moduli space constructed above is ill-behaved partly because we are
considering ‘too many’ surfaces– most K3 surfaces in the moduli space are not algebraic.

Theorem 3.4 (Kodaira). A complex manifold X is projective if and only if H2(X,Z) contains a Kähler class.

Indeed by the Lefshetz (1, 1)-theorem we know that every integral (1, 1)-class (i.e. element of H2(X,Z)∩H1,1(X))
is the Chern class of some holomorphic line bundle, and Kodaira’s theorem shows that the classes with positive
representatives (i.e. Kähler classes) come from ample line bundles.

Corollary 3.5. A very general1 K3 surface is not projective.

Proof. If X is a projective K3 surface, then H1,1(X) ∩ H2(X,Z) is necessarily non-zero and hence the sub-
space H2,0(X) (which determines the complex structure on X) is orthogonal to some δ ∈ H2(X,Z). It follows
that in ΩK3, the locus of marked projective K3 surfaces is contained in the closed hyperplane arrangement
ΩK3 ∩

(∪
δ∈ΛK3

δ⊥
)
. The complement U is dense and open, and any K3 surface with period in U is not

projective.

Thus to get better behaved moduli spaces, we consider polarised K3 surfaces.

Definition 3.6. A polarised K3 surface is a pair (X, L) where X is a K3 surface and L is a primitive (i.e. not of
the form M⊗(>1)) ample line bundle. The degree of the polarised K3 surface (X, L) is equal to degL = L2.

§ 3.3 Moduli of polarised K3 surfaces. Note the degree of a polarised K3 surface X is always even and
positive, say equal to 2d. Now in this situation L⊗3 is very ample, giving an embedding X ↪→ P9d+1 such that
X has Hilbert polynomial f(t) = 9dt2 + 2. Thus the straightforward thing to do is to realise that polarised K3
surfaces of degree 2d lie in an open subset of the Hilbert scheme Hilb9dt

2+2(P9d+1), and thus the required
moduli space of K3 surfaces is obtained as a GIT quotient of this locus by the PGL(9d + 1,C) action. In
practice, however, checking for semistability is hard.

This is circumvented by constructing the moduli space explicitly from that of marked K3 surfaces and using a
stronger form of the Torelli theorem. We will provide a sketch.

1We use ‘very general’ to mean ‘outside the union of countably many Zariski-closed subvarieties’.
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By standard lattice theory (Eichler’s criterion), up to the action of O(ΛK3) there is a unique primitive element
ℓ ∈ ΛK3 satisfying ℓ2 = 2d and hence we can choose a marking φ : H2(X,Z) → ΛK3 with φ(c1L) = ℓ. Then its
reasonable to consider the set

ℳ2d = {(X,φ, L) | (X,φ) is a marked K3 surface, (X, L) is polarised, and φ[L] = ℓ}.

Now if (X,φ, L) ∈ ℳ2d, then clearly the period point [φ(H2,0X)] ∈ P(ΛK3 ⊗ C) lies in the hyperplane
{[x] | x ⊥ ℓ}, which we can write as the projective space P(Λ2d ⊗C) for Λ2d = ℓ⊥ ∼= U⊕2 ⊕E8(−1)⊕2 ⊕ I1(−2d).
Thus the natural period domain to consider is

Ω2d = {[x] ∈ P(Λ2d ⊗ C) | (x, x) = 0, (x, x̄) > 0}.

Turns out this has two irreducible components which are interchanged by complex conjugation, so we take
the orientation preserving component Ω+

2d. This is an example of a Seigel upper half plane, a family of spaces
forming higher dimensional analogue of the upper half plane H. There is a natural period map ℳ2d → Ω2d,
and considering families of marked polarised K3 surfaces (defined in the obvious way) give ℳ2d a holomorphic
structure.

Again, to forget the marking we consider the action of Stab(ℓ) ⊂ O(ΛK3) on ℳ2d and that of Stab(ℓ)+ on
Ω+

2d (where we take the subgroup preserving the chosen component). It is convenient to write Ω2d/Stab(ℓ) for
Ω+

2d/Stab(ℓ)
+, this is an irreducible normal quasi-projective variety by a theorem of Bailey–Borel. Then one way

to state the strong Torelli theorem for K3 surfaces is that the induced period map ℳ2d/Stab(ℓ) → Ω2d/Stab(ℓ)
is an open immersion. This gives us the moduli of polarised K3 surfaces as a 19 dimensional quasi-projective
variety.

Note the difference from the moduli space of marked K3 surfaces we constructed previously– the period map
here not surjective. To compute the complement, recall that the Nakai–Kleiman criterion states a line bundle L

on a surface X is ample if and only if L2 > 0 and L ·C > 0 for all curves C ⊂ X. When X is K3, it suffices to test
the second condition only on curves with self-intersection −2, i.e. the roots of Λ2d. Writing ∆ ⊂ Λ2d for the
set of roots, we thus see that the complement (Ω2d/Stab(ℓ)) \ (ℳ2d/Stab(ℓ)) is given by the root hyperplanes∪

δ∈∆{[x] | x ⊥ δ}.

Remark 3.7. For general hyperKählers there is a very similar picture that realises all deformation families. The
slight subtlety is that the polarisation ℓ ∈ ΛX is no longer uniquely determined, and hence it is also not obvious
what the replacement for the group action should be. Turns out the solution is to consider the group of Hodge
isometries arising as monodromies, but that is beyond the scope of these notes.

§ 4 Cubic 4-folds

In this section we will use some of the techniques discussed to address rationality problems for cubic 4-folds.
To begin, note that the locus of smooth cubic 4-folds forms an open set V in the linear system |𝒪P5(3)| ∼= P55.
Since the automorphism group PGL(6,C) is 35-dimensional, we see that the quotient C = V � PGL(6,C) is a
20-dimensional quasi-projective variety, the moduli space of cubic 4-folds. Conjecturally rational cubics form a
codimension one locus related intricately with the Hodge theoretic and derived=categorical behaviour of K3
surfaces.

Before proceeding, we first recall some facts about the cohomology of cubic 4-folds. If Y ⊂ P5 is a cubic
hypersuface, its Hodge diamond looks like

1

0 0

0 1 0

0 0 0 0

0 1 21 1 0.

The most interesting bit is the middle cohomology lattice H4(Y,Z) ∼= I⊕21
1 ⊕I1(−1)⊕2. We can pick a generator

h ∈ H2(X,Z) associated (via the Chern class map) to a hyperplane section, then the class h2 ∈ H4(X,Z) has self
intersection 3. This allows us to define the primitive cohomology lattice H4(Y,Z)prim = (h2)⊥ ∼= E⊕2

8 ⊕U⊕2⊕
(
2 1
1 2

)
.

Note the similarity with the K3 lattice– in fact the primitive cohomology of certain cubic 4-folds can be
identified with a subspace of the cohomology of an associated K3 surface, so that these cubics ‘look like
K3 surfaces’ to Hodge theory. Conjecturally these are precisely the rational cubics. We will sketch this with
examples.
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§ 4.1 Explicit constructions. We look at two examples of rational cubic 4-folds and how K3 surfaces naturally
arise in this setting.

Example 4.1 (Cubics containing two planes). Consider the cubic polynomials g = u2x + v2y + w2z and
h = ux2 + vy2 + wz2, and the associated hypersurface Y = V(g − h) ⊂ P5. This is smooth, and one can
consider the contained planes Π1 = V(u,w, v) and Π2 = V(x, y, z). Given two general points p1 ∈ Π1, p2 ∈ Π2,
the line through them

ℓp1,p2
= {s · p1 + t · p2 | [s : t] ∈ P1}

intersects Y in three points {p1, p2, q} by Bezout’s theorem; this defines a rational map Π1 ×Π2 99K Y given by
(p1, p2) 7→ q. It is a birational map– given any point q ∈ P5 \ (Π1 ∪Π2), there is a unique line passing through
q that meets Π1 and Π2. Thus Y is birational to P2 × P2, i.e. it is rational.

The given map Π1 × Π2 99K Y is undefined whenever ℓp1,p2
lies inside Y, i.e. on S = V(g, h) ∩ Π1 ∩ Π2. Since

S is a (1, 2), (2, 1) complete intersection in P2 × P2, it is a K3 surface.

Example 4.2 (Pfaffian cubics). Fix a vector space V ∼= C6 and consider the Grassmannian G = Gr(2, V)
parametrising lines in P(V). This is 8-dimensional, sits as a degree 14 subvariety inside P(

∧
2V) via the Plücker

embedding, and is Fano with canonical bundle 𝒪G(−6). Thus for a general 9-dimensional linear subspace
L ⊂

∧
2V , the variety S = G ∩ P(L) is the complete intersection of G with six hyperplanes (corresponding to a

basis of L⊥ ⊂
∧

2V∗), and adjunction formula shows S is a K3 surface. In fact all general polarised K3 surfaces
(S,H) of degree H2 = 14 arise in this fashion [see Muk88, §3].

There is a natural way to produce cubic 4-folds in this setting. Note that the projective space P(
∧

2V∗)

parametrises alternating forms V × V → C up to scaling. Now the determinant of a 6 × 6 skew-symmetric
matrix M has form detM = Pf(M)2 for a homogeneous cubic polynomial Pf ∈ C[Mij | 1 6 i < j 6 6], so
the vanishing locus V(Pf) ⊂ P(

∧
2V∗) parametrises degenerate forms (i.e. forms of rank 6 4). On the other

hand the Grassmannian G∗ = Gr(2, V∗) parametrises forms of rank 2, thus giving us a natural stratification
G∗ ⊂ V(Pf) ⊂ P(

∧
2V∗). If the choice of L was sufficiently general, then L⊥ ⊂

∧
2V∗ is disjoint from G∗ and is

not contained in V(Pf). Thus P(L⊥) is a P5 whose points correspond to skew-forms V × V → C of rank > 4.
The locus of degenerate forms in P(L⊥) is then given by a cubic hypersurface Y = P(L⊥) ∩ V(Pf), called the
Pfaffian cubic associated to L. If explicit coordinates are fixed, then the choice of L⊥ corresponds to the choice
of a 6 × 6 skew-symmetric matrix with entries given by linear forms in C[u, v,w, x, y, z], and Y cuts out the
locus where this matrix is degenerate.

Exercise 4.3. Show that Y is rational, by considering a general 5-dimensional subspace W ⊂ V and mapping
[φ] ∈ Y to [W ∩ kerφ] ∈ P(W). The birational map P4 99K S is in fact a blow-up in a surface birational to S

[see Has00, §4.1.3].

Thus to the data of L ⊂
∧

2V , we have associated a cubic 4-fold Y parametrising non-degenerate alternating
forms in L⊥ and a K3 surface S parametrising the 2-planes P ⊂ V such that φ|P = 0 for every φ ∈ L⊥. There
is a surprising connection between the geometry of the two, first explored by Beauville and Donagi in [BD85].
They were studying the so-called Fano variety of lines F(Y), which parametrises lines contained in Y. Since Y

lies in P(L⊥), the variety F(Y) naturally sits in the Grassmannian Gr(2, L⊥).

Theorem 4.4 (Beauville–Donagi). The Fano variety of lines F(Y) is isomorphic to the Hilbert scheme S[2].

Sketch. Given two distinct points in S, we can realise them as 2-planes P,Q ⊂ V . By the generality hypothesis
P+Q is a 4-plane, and we consider the linear subspace ℓ = {[φ] ∈ P(L⊥) : φ|P+Q = 0}. This is 1-dimensional,
and if [φ] ∈ ℓ then φ|P = φ|Q = 0 so φ is necessarily degenerate. Thus we have a line ℓ ⊂ Y, and our map
S[2] → F(Y) maps {P,Q} 7→ ℓ.

Remark 4.5. Despite its name, F(Y) is not a Fano variety. Indeed the theorem shows it is hyperKähler, and the
name is simply a reflection of the fact that this variety was first extensively studied by Fano.

§ 4.2 Hodge theory of cubic 4-folds. If Y ⊂ P5 is a cubic 4-fold, we can analogously construct the Fano
variety of lines F(Y) ⊂ Gr(2, 6), this is a smooth hyperKähler 4-fold. There is a universal line ℒ ⊂ F(Y) × Y

parametrising pairs (ℓ, y) such that y ∈ ℓ. The natural map q : ℒ → F(Y) is a P1–bundle, and the fibers of the
map p : ℒ → Y are lines in Gr(2, 6). There is an induced morphism on cohomology

α = q∗ ◦ p∗ : H4(Y,Z) → H2(F1(Y),Z)

called the Abel–Jacobi map, which sends the class h2 to g = [𝒪F(Y)(1)] where the hyperplane class on F(Y) is
induced from the Plücker embedding of the ambient Grassmannian. This map in fact preserves the Hodge
structures, up to a twist.
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Theorem 4.6. The map α : H4(Y,Z) → H2(F(Y),Z)(−1) is an isomorphism of Hodge structures, and induces a
Hodge isometry (h2)⊥ ∼= g⊥.

Now [Cha12] shows that F(Y) in fact determines Y. Since hyperKähler manifolds have a Torelli theorem, we can
use this construction to obtain an analogous one for cubic 4-folds.

Corollary 4.7. Two cubic 4-folds are isomorphic if and only if their primitive cohomology lattices are isometric as
Hodge structures.

Thus fixing the lattice M = U⊕2 ⊕ E⊕2
8 ⊕

(
2 1
1 2

)
, we can consider the manifold ΩM parametrising compatible

Hodge structures on M. As before, there is a period map P : C → ΩM/O(M) from the moduli space C of
cubic 4-folds. The Torelli theorem says this period map is an open immersion.

§ 4.3 Rationality problems and special cubics. In particular, the period map can be used to show that a
very general cubic 4-fold has H2,2(X,Z) ∼= Z · h2.

Definition 4.8. Say a cubic 4-fold Y is special if there is a surface S ⊂ Y with [S] /∈ Z · h2 ⊆ H2,2(X,Z).

For such Y, we say a labelling is a saturated rank 2 sublattice K ⊂ H2,2(X,Z) containing Z·h2. The discriminant
of the labelling is the determinant of the Gram matrix of the lattice.

Say a polarised K3 surface (X, L) is associated to a labelled cubic 4-fold (Y, K) if K⊥ ⊂ H4(Y,Z) is isometric as
a Hodge structure to [L]⊥ ⊂ H2(X,Z).

These were extensively studied in [Has00], and we summarise some of the results.

Theorem 4.9 (Hasset). For d > 0, consider the space Cd ⊂ C of smooth cubic 4-folds that admit a labelling of
discriminant d. Then Cd is an irreducible divisor if and only if d > 6 and d ≡ 0, 2 (mod 3)

Theorem 4.10 (Hasset). A labelled cubic 4-fold (Y, K) has an associated K3 surface if and only if its discriminant
d is positive, 4, 9 ∤ d, and all odd prime factors of d are of the form 3n+ 1.

Conjecturally, rationality is equivalent to having an associated K3 surface.

Conjecture. (Hasset) A cubic 4-fold Y is rational if and only if Y ∈ Cd for d satisfying the conditions of the
theorem above. In particular, a very general cubic 4-fold is irrational.

On the other hand, by considering non-commutative K3 surfaces arising as Kuznetsov components in Db Y,
Kuznetsov conjectures another criterion for rationality.

Conjecture. (Kuznetsov) A cubic 4-fold Y is rational if and only if the Kuznetsov component associated to the
exceptional collection (𝒪Y ,𝒪Y(1),𝒪Y(2)) is equivalent to the derived category of a K3 surface.
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